106
Mark brainliest please
Hope this helps you
Answer:
![\frac{\sqrt[3]{16y^4}}{x^2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B16y%5E4%7D%7D%7Bx%5E2%7D)
Step-by-step explanation:
The options are missing; However, I'll simplify the given expression.
Given
![\frac{\sqrt[3]{32x^3y^6}}{\sqrt[3]{2x^9y^2} }](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B32x%5E3y%5E6%7D%7D%7B%5Csqrt%5B3%5D%7B2x%5E9y%5E2%7D%20%7D)
Required
Write Equivalent Expression
To solve this expression, we'll make use of laws of indices throughout.
From laws of indices ![\sqrt[n]{a} = a^{\frac{1}{n}}](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Ba%7D%20%20%3D%20a%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D)
So,
gives

Also from laws of indices

So, the above expression can be further simplified to

Multiply the exponents gives

Substitute
for 32


From laws of indices

This law can be applied to the expression above;
becomes

Solve exponents


From laws of indices,
; So,
gives

The expression at the numerator can be combined to give

Lastly, From laws of indices,
; So,
becomes
![\frac{\sqrt[3]{(2y)}^{4}}{x^2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B%282y%29%7D%5E%7B4%7D%7D%7Bx%5E2%7D)
![\frac{\sqrt[3]{16y^4}}{x^2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B16y%5E4%7D%7D%7Bx%5E2%7D)
Hence,
is equivalent to ![\frac{\sqrt[3]{16y^4}}{x^2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B16y%5E4%7D%7D%7Bx%5E2%7D)
Answer:
523.6
Step-by-step explanation:
Not sure how to explain •-•
Hope it helps c:
Substitution
-2x+8=x^2-9x+18
x^2-7x+10=0
Factoring, we get
(x-5)(x-2)=0
x=5, x=2
If x equals 5,
y=-2(5)+8=
-10+8=
-2
Therefore, we derive our first solution:
<h2><u><em>
x=5,</em></u></h2><h2><u><em>
y=-2</em></u></h2>
Now we solve for our second x
If x=2,
y=-4+8=
4
Therefore, we derive our second solution:
<h2><u><em>
x=2</em></u></h2><h2><u><em>
y=4</em></u></h2>
<u><em></em></u>
-Hunter
Answer:
109
Step-by-step explanation:
Formula
<ZHG + <IHZ = <IHG
Givens
<ZHF = 11x - 1
<IHZ = 24
<IHG = 12x + 13
Solution
11x - 1 + 24 = 12x + 13 Combine terms on the left
11x + 23 = 12x + 13 Subtract 13 from both sides
<u> - 13 - 13 </u>
11x + 10 = 12x Subtract 11x from both sides
<u>-11x -11x</u>
10 = x
Answer
11x - 1 = 11*10 - 1 = 110 - 1 = 109