Answer:
pH = 11.3
Explanation:
From the question given above, the following data were obtained:
Concentration of hydronium ion [H₃O⁺] = 4.950×10¯¹² M
pH =.?
The pH of a solution is defined by the following equation:
pH = –Log [H₃O⁺]
Thus, with the above formula, we can obtain the pH of the solution as follow:
Concentration of hydronium ion [H₃O⁺] = 4.950×10¯¹² M
pH =.?
pH = –Log [H₃O⁺]
pH = –Log 4.950×10¯¹²
pH = 11.3
Answer:
32.7 g of Zn
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
Zn + 2HCl —> ZnCl₂ + H₂
From the balanced equation above,
1 mole of Zn reacted to produce 1 mole of H₂
Next, we shall determine the number of mole of Zn required to produce 0.5 mole of H₂. This can be obtained as follow:
From the balanced equation above,
1 mole of Zn reacted to produce 1 mole of H₂.
Therefore, 0.5 mole of Zn will also react to produce to 0.5 mole of H₂.
Thus, 0.5 mole of Zn is required.
Finally, we shall determine the mass of 0.5 mole of Zn. This can be obtained as follow:
Mole of Zn = 0.5 mole
Molar mass of Zn = 65.4 g/mol
Mass of Zn =?
Mass = mole × molar mass
Mass of Zn = 0.5 × 65.4
Mass of Zn = 32.7 g
Thus, 32.7 g of Zn is required to produce 0.5 mole of H₂.
Answer:
Recycling and reuse of materials
Explanation:
One of the greatest problems facing the human population is the problem of solid waste disposal. The menace of solid waste disposal has led to the idea of landfills. Land fills are depressions on the earth surface prepared for the purpose of solid waste disposal.
The most important approach towards solid waste disposal is the idea of recycling of materials. A material can be collected after use and processed into the same material or serve as a precursor in another manufacturing process. This means that no waste is generated as the materials which are supposed to be disposed of as solid waste are processed into other useful materials. This will reduce the volume of solid wastes generated that may need to be disposed in a landfill.
Answer:
47.2 g
Explanation:
Let's consider the following double displacement reaction.
3 FeCl₂ + 2 Na₃PO₄ → Fe₃(PO₄)₂ + 6 NaCl
The molar mass of Fe₃(PO₄)₂ is 357.48 g/mol. The moles corresponding to 44.3 g are:
44.3 g × (1 mol / 357.48 g) = 0.124 mol
The molar ratio of Fe₃(PO₄)₂ to FeCl₂ is 1:3. The moles of FeCl₂ are:
3 × 0.124 mol = 0.372 mol
The molar mass of FeCl₂ is 126.75 g/mol. The mass of FeCl₂ is:
0.372 mol × (126.75 g/mol) = 47.2 g
A-leads to the abrasion of rocks and minerals
A-dense vegetation cover
True
Explanation:
Weathering is the physical disintegration and chemical decomposition of rocks to form sediments and soils.
Agent of weathering are wind, water and glacier.
Chemical weathering contributes to physical weathering in that it leads to the abrasion of rocks and minerals.
During chemical weathering, a rock chemically combines with materials in the environment and weakens it.
When physical weathering processes are induced, grains produced independently weakening of bonds in rocks grind against one another and wears each other off.
An area with a dense vegetation cover undergoes rapid chemical weathering:
- Plant roots penetrates deep into the rock and increases the surface area of chemical action.
- Plants produce chemicals that combines with rocks and causes them to decay.
- Since the area is always moist, chemical action becomes more severe.
Buildings and statues made of stone are subjected to the same degree of weathering as rocks exposed naturally.
This is true.
Statues and buildings weather just like rocks we find in nature.
It is the same sunshine and rain that impacts rocks that also impacts buildings and statues.
So they degrade at the same rate except they are protected.
learn more:
Erosion brainly.com/question/2473244
#learnwithBrainly