Answer:
f. Sn^4+
c. second
e. Al^3+
d. third
Explanation:
This question comes from a quantitative analysis showing the flowchart of a common scheme for identifying cations.
Now, from the separation scheme, Let's assume that Sn⁴⁺ & Al³⁺ were given; Then, Yes, the separation will work.
However, there will be occurrence of precipitation after the 1st step1.
So, the <u>Sn⁴⁺</u> cation will precipitate after the <u>second </u>step. Then the <u>Al³⁺</u> cation will precipitate after the <u>third</u> step.
Explanation:
nose amigo, la verdad yo también tengo dificultades escolares muchísimas gracias, Dios te bendiga en otro idioma por cierto mi anime favorito es cowboy beboop
Your number in decimal form is
3,000,000
.
To get to standard scientific notation, we move the decimal point so there is only one non-zero digit in front of the decimal point.
So,
3,000,000
becomes
3.000,000
.
The trailing zeroes are not significant, so
3.000,000
becomes
3
.
We moved the decimal point six places, so the exponent is
6
.
We moved the decimal point to the left, so the exponent is positive.
The exponential part is therefore
10
6
.
3,000,000=3 X10^6
Answer:
Option C (nuclear binding energy) is the appropriate choice.
Explanation:
- At either the nuclear scale, the nuclear binding energy seems to be the energy needed to remove and replace a structure of the atom itself into the characterize elements (to counteract the intense nuclear arsenal).
- Nuclear warheads (bargaining power) bind everything together neutrons as well as protons within an elementary particle.
Some other options in question aren't relevant to the particular instance. So that the option preceding will also be the right one.
The number 6.022 × 1023 indicating the number of atoms or molecules in a mole of any substance