Answer:
Conservation of Energy and Mass
The law of conservation of mass states that in a chemical reaction mass is neither created nor destroyed. ... Similarly, the law of conservation of energy states that the amount of energy is neither created nor destroyed.
Answer is: reaction is second order with respect to a.
This second order reaction<span> is proportional to the square of the concentration of reactant a.
</span>rate of reaction = k[a]².
k is second order rate constant and have unit M⁻¹·s⁻¹.
Integrated rate law for this reaction: <span><span>1/[a]</span>=<span>1/<span>[a]</span></span></span>₀ <span>+ kt.
t is time in seconds..</span>
<span>that it is cooler than the lithosphere.</span>
Ok the ML (the 3rd number) is not legit because the ML value can only be from -L to L (the second value)
Answer: It depends equilibrium constant K
Explanation: You need to to have reaction formula.
If K >> 1 then concentrations of products are much bigger than
concentrations of reactants. If K < < 1, concentration of products is small.