Answer:
The Equilibrium constant K is far greater than 1; K>>1
Explanation:
The equilibrium constant, K, for any given reaction at equilibrium, is defined as the ratio of the concentration of the products raised to their stoichiometric coefficients divided by the concentration of reactants raised to their stoichiometric coefficients.
It tells us more about how how bigger or smaller the concentration of products is to that of the reactants when a reaction attains equilibrium. From the given data, as the color of the reactant mixture (Br2 is reddish-brown, and H2 is colourless) fades, more of the colorless product (HBr is colorless) is being formed as the reaction approaches equilibrium. This indicates yhat the concentration of products becomes relatively higher than that of the reactants as the reaction progresses towards equilibrium, the equilibrium constant K, must be greater than 1 therefore.
Answer:
A collapse of the population is rotting, food is not enough and livelihoods have become unfeasible to decrease the number of individuals again.
Another way is to generate mutations to generate a species more vulnerable to decreasing numbers.
In this way the overpopulation is controlled.
Explanation:
In ecosystems, if an increased population breaks the balance of this and begins a new constant adaptation of the extinction of some and overpopulation of others, which may be some chains break or remain unstable.
Answer:
6626 g
Explanation:
Given that:
Density of water = 1.00 g/ml, volume of water = 42800 ml.
Since density = mass/ volume
mass of water = volume of water * density of water = 42800 ml * 1 g/ml = 42800 g
Initial temperature of water = 22°C and final temperature of water = 45°C.
specific heat capacity for water = 4.184 J/g°C
ΔT water = 45 - 22 = 23°C
For iron:
mass = m,
specific heat capacity for iron = 0.444 J/g°C
Initial temperature of iron = 1445°C and final temperature of water = 45°C.
ΔT iron = 45 - 1445 = -1400°C
Quantity of heat (Q) to raised the temperature of a body is given as:
Q = mCΔT
The quantity of heat required to raise the temperature of water is equal to the temperature loss by the iron.
Q water (gain) + Q iron (loss) = 0
Q water = - Q iron
42800 g × 4.184 J/g°C × 23°C = -m × 0.444 J/g°C × -1400°C
m = 4118729.6/621.6
m = 6626 g
<span>In a solid the atoms are tightly packed together and vibrate in place, in a liquid the atoms are loosely packed together and can move past each other,
extra: and in a gas the atoms are far apart and move freely and </span><em>
</em><em>
</em>
<span>All molecules are made up of atoms.
N2 O2 and H2 exist in molecule form and not in atomic form.
They exist freely in nature as molecules.
According to above explanation,
</span><span>B. Some elements found in nature exist as molecules, is the correct answer.</span>