Answer:
Sound energy is what we get from an MP3 player
It uses Electrical energy
Explanation:
The electron domain geometry is trigonal bipyramidal while the molecular geometry of the compound is seesaw.
The shapes of molecules is determined by the number of electron pairs on the valence shell of the central atom in the molecule. These electron domains include lone pairs and bond pairs.
The lone pairs only contribute towards the electron domain geometry and not the molecular geometry. SCl4 has five electron domains hence its electron domain geometry is trigonal bipyramidal. The molecular geometry of the compound is seesaw.
Learn more: brainly.com/question/6505878
Charle: V1/T1=V2/T2
Gay lussac: p1/T1=p2/T2
The solubility of Lead(II)Fluoride is 2.17 × 10⁻³ g/L in water at 25°C.
At a specific solution temperature, a solid salt compound can entirely dissolve in pure water up to a predetermined molar solubility limit. The dissociation stoichiometry ensures that the molarities of the constituent ions are proportionate to one another. The saturable nature of the solution causes them to also coexist in a solubility equilibrium with the solid component. At this temperature, a solubility product constant Ksp is calculated using the solubility product of their molarity values.
Lead (II) fluoride has the following solubility equilibrium for its saturated solution:
⇄ 
![K_s_p = [Pb^2^+][F^-]^2](https://tex.z-dn.net/?f=K_s_p%20%3D%20%5BPb%5E2%5E%2B%5D%5BF%5E-%5D%5E2)
This compound dissociates in a 1:2 ratio of ions. For the compound dissolved in pure water, the Ksp is expressed in terms of the molar solubility "x" as:


Here,
× 
4.1 × 10⁻⁸ = 4 x³
x³ = 1.025 × 10⁻⁸
x³ = 10.25 × 10⁻⁹
x = 2.17 × 10⁻³ g/L
Therefore, the solubility of Lead(II)Fluoride is 2.17 × 10⁻³ g/L.
Learn more about solubility here:
brainly.com/question/23946616
#SPJ4