Answer:
a) pH will be 12.398
b) pH will be 4.82.
Explanation:
a) The moles of NaOH added = molarity X volume (L) = 2 X 0.01 = 0.02 moles
The total volume after addition of pure water = 0.780+0.01 = 0.79 L
The new concentration of /NaOH will be:

the [OH⁻] = 0.025
pOH = -log [OH⁻] = 1.602
pH = 14 -pOH = 12.398
b) The buffer has butanoic acid and butanoate ion.
i) Before addition of NaOH the pH will be calculated using Henderson Hassalbalch's equation:
![pH=pKa+log\frac{[salt]}{[acid]}](https://tex.z-dn.net/?f=pH%3DpKa%2Blog%5Cfrac%7B%5Bsalt%5D%7D%7B%5Bacid%5D%7D)
pKa=
ii) on addition of base the pH will increase.
Reflection Mirror
Mirror Reflection
Total change in energy = Heat produced by system + work done on the system
= 228 - 55
= 173 kJ
Because this energy is released as heat, the reaction is exothermic.
Answer:
V₂ ≈416.7 mL
Explanation:
This question asks us to find the volume, given another volume and 2 temperatures in Kelvin. Based on this information, we must be using Charles's Law and the formula. Remember, his law states the volume of a gas is proportional to the temperature.
where V₁ and V₂ are the first and second volumes, and T₁ and T₂ are the first and second temperature.
The balloon has a volume of 600 milliliters and a temperature of 360 K, but the temperature then drops to 250 K. So,
- V₁= 600 mL
- T₁= 360 K
- T₂= 250 K
Substitute the values into the formula.
- 600 mL /360 K = V₂ / 250 K
Since we are solving for the second volume when the temperature is 250 K, we have to isolate the variable V₂. It is being divided by 250 K. The inverse o division is multiplication, so we multiply both sides by 250 K.
- 250 K * 600 mL /360 K = V₂ / 250 K * 250 K
- 250 K * 600 mL/360 K = V₂
The units of Kelvin cancel, so we are left with the units of mL.
- 250 * 600 mL/360=V₂
- 416.666666667 mL= V₂
Let's round to the nearest tenth. The 6 in the hundredth place tells us to round to 6 to a 7.
The volume of the balloon at 250 K is approximately 416.7 milliliters.