1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
melamori03 [73]
3 years ago
9

Find the simple interest

Mathematics
1 answer:
Pavlova-9 [17]3 years ago
8 0

Answer:

$81 of interest would be earned

Step-by-step explanation:

A=prt

A= (900)(0.03)(3)

A = 81

You might be interested in
Hey can you please help me posted picture of question:)
Fudgin [204]
The given trinomial can be factored using factorization as
x²+19x+84
=x²+12x+7x+84
=x(x+12)+7(x+12)
=(x+12)(x+7)

Thus x+12 and x+7 are the factors of the given trinomial. From these we can see x+12 is listed in option A.
So the answer to this question is Option A
7 0
2 years ago
Read 2 more answers
Maggie is x years old. Her brother Demarco is 4 years older than her. Anna is 3 times as old as Demarco. Write and simplify an e
ExtremeBDS [4]
Maggie = x years old
Demarco = x + 4
Anna = 3*Demarco

Anna = 3*(x + 4)
Anna = 3x + 12

Hope this helps!


7 0
3 years ago
Can someone thoroughly explain this implicit differentiation with a trig function. No matter how many times I try to solve this,
Anton [14]

Answer:

\frac{dy}{dx}=y'=\frac{\sec^2(x-y)(8+x^2)^2+2xy}{(8+x^2)(1+\sec^2(x-y)(8+x^2))}

Step-by-step explanation:

So we have the equation:

\tan(x-y)=\frac{y}{8+x^2}

And we want to find dy/dx.

So, let's take the derivative of both sides:

\frac{d}{dx}[\tan(x-y)]=\frac{d}{dx}[\frac{y}{8+x^2}]

Let's do each side individually.

Left Side:

We have:

\frac{d}{dx}[\tan(x-y)]

We can use the chain rule, where:

(u(v(x))'=u'(v(x))\cdot v'(x)

Let u(x) be tan(x). Then v(x) is (x-y). Remember that d/dx(tan(x)) is sec²(x). So:

=\sec^2(x-y)\cdot (\frac{d}{dx}[x-y])

Differentiate x like normally. Implicitly differentiate for y. This yields:

=\sec^2(x-y)(1-y')

Distribute:

=\sec^2(x-y)-y'\sec^2(x-y)

And that is our left side.

Right Side:

We have:

\frac{d}{dx}[\frac{y}{8+x^2}]

We can use the quotient rule, where:

\frac{d}{dx}[f/g]=\frac{f'g-fg'}{g^2}

f is y. g is (8+x²). So:

=\frac{\frac{d}{dx}[y](8+x^2)-(y)\frac{d}{dx}(8+x^2)}{(8+x^2)^2}

Differentiate:

=\frac{y'(8+x^2)-2xy}{(8+x^2)^2}

And that is our right side.

So, our entire equation is:

\sec^2(x-y)-y'\sec^2(x-y)=\frac{y'(8+x^2)-2xy}{(8+x^2)^2}

To find dy/dx, we have to solve for y'. Let's multiply both sides by the denominator on the right. So:

((8+x^2)^2)\sec^2(x-y)-y'\sec^2(x-y)=\frac{y'(8+x^2)-2xy}{(8+x^2)^2}((8+x^2)^2)

The right side cancels. Let's distribute the left:

\sec^2(x-y)(8+x^2)^2-y'\sec^2(x-y)(8+x^2)^2=y'(8+x^2)-2xy

Now, let's move all the y'-terms to one side. Add our second term from our left equation to the right. So:

\sec^2(x-y)(8+x^2)^2=y'(8+x^2)-2xy+y'\sec^2(x-y)(8+x^2)^2

Move -2xy to the left. So:

\sec^2(x-y)(8+x^2)^2+2xy=y'(8+x^2)+y'\sec^2(x-y)(8+x^2)^2

Factor out a y' from the right:

\sec^2(x-y)(8+x^2)^2+2xy=y'((8+x^2)+\sec^2(x-y)(8+x^2)^2)

Divide. Therefore, dy/dx is:

\frac{dy}{dx}=y'=\frac{\sec^2(x-y)(8+x^2)^2+2xy}{(8+x^2)+\sec^2(x-y)(8+x^2)^2}

We can factor out a (8+x²) from the denominator. So:

\frac{dy}{dx}=y'=\frac{\sec^2(x-y)(8+x^2)^2+2xy}{(8+x^2)(1+\sec^2(x-y)(8+x^2))}

And we're done!

8 0
3 years ago
What is the slope intercept of 2y=14-4x
pentagon [3]
7, 14 would be it but you have to divide the whole equation by 2 to get the y alone
4 0
3 years ago
Read 2 more answers
Erin invested 15000 some at 5 percent and some at 8 percent annual interest if she recieves an annual return of 930 dollars how
eduard
.08x+.05(15000-x)=930
.08x+750-.05=930
.08x-.05x=930-750
.03x=180
X=180/.03=6,000 at 8%
(15000-6000)=9000 at 5%
8 0
3 years ago
Other questions:
  • HELP PLEASE! Use the diagram to awnser the questions.
    12·1 answer
  • A number increased by 7 is less than 15
    8·2 answers
  • Can someone please answer my question please​
    11·1 answer
  • A model train uses a scale of 148. One car of the model train is 6 inches long
    15·1 answer
  • Calculate and express your answer in decimal form: (0.2)⋅40
    7·1 answer
  • Which expression is equivalent to
    13·1 answer
  • Please Help!! I'll give thanks And Rate best if correct!
    8·1 answer
  • #9 write an inequality for the word phrase below: A number x plus 4 is at least -14
    5·1 answer
  • Question: 5/12 − 2/5= 1/60​
    11·2 answers
  • Change 3/8 to percent
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!