Moons revolve around a planet, and planets revolve around the sun. Ganymede is considered a moon because it revolves around the planet Jupiter, therefore, it is a moon. :) I hope this helps!
Answer:
v = √2G
/ R
Explanation:
For this problem we use energy conservation, the energy initiated is potential and kinetic and the final energy is only potential (infinite r)
Eo = K + U = ½ m1 v² - G m1 m2 / r1
Ef = - G m1 m2 / r2
When the body is at a distance R> Re, for the furthest point (r2) let's call it Rinf
Eo = Ef
½ m1v² - G m1
/ R = - G m1
/ R
v² = 2G
(1 / R - 1 / Rinf)
If we do Rinf = infinity 1 / Rinf = 0
v = √2G
/ R
Ef = = - G m1 m2 / R
The mechanical energy is conserved
Em = -G m1
/ R
Em = - G m1
/ R
R = int ⇒ Em = 0
Answer:
the correct answer is C
Explanation:
When we express that the scale is 1:30 we mean that the objects of the realization are reduced by a factor of 30 in the graph, for example a distance of 30 cm in the graph is represented by a distance of 1 cm.
Therefore something that in the graph has n value to bring it to real size must be multiplied by the scale.
Applying this to our case if there is
10 boulder on the chart
in reality there are #_boulder = 10 30
#_boulder = 300 boulder
so the correct answer is C
Answer:
omg i'm so sorry, i hope you get better <3!
Explanation:
For any mass m:
a = F/m
v = √2*F/m*s = √2F/sm = k/√m
Momentum = mv = k√m
Energy = 1/ mv² = 1/2 m.k²/m = 1/2k²
SO
Both will have same energy
The larger mass will have greater momentum