Answer:
If a piece of iron is brought near a permanent magnet, the electrons within the atoms in the iron orient their spins to match the magnetic field force produced by the permanent magnet, and the iron becomes “magnetized.”
Explanation:
i dont know how to add align and domain
Answer: a convex lens forms a larger virtual image
Explanation: i just took the quiz
Answer:
a principle stating that energy cannot be created or destroyed, but can be altered from one form to another.
Explanation:
Hi there!
Recall the equation for electric potential of a point charge:

V = Electric potential (V)
k = Coulomb's Constant(Nm²/C²)
Q = Charge (C)
r = distance (m)
We can begin by solving for the given electric potentials. Remember, charge must be accounted for. Electric potential is also a SCALAR quantity.
Upper right charge's potential:

Lower left charge's potential:

Add the two, and subtract from the total EP at the point:

The remaining charge must have a potential of 2036.25 V, so:

The acceleration of the car will be needed in order to calculate the time. It is important to consider that the final speed is equal to zero:

We can clear time in the speed equation:

If you find some mistake in my English, please tell me know.