Answer:
it tells you that the speed increases until about 20 seconds then keeps a steady pace for 20 seconds then the speed drops and stops at 55 seconds in the process.
<span>If an inductor is connected across an ac source and suppose the frequency of the source is doubled, then t</span>he inductive reactance of the inductor is also doubled. The inductive reactance (XL) is the t<span>he opposition to current flowing through a coil in an AC circuit, the </span>impedance measured in Ohms and can be calculated with the following formula:
XL=2*pi*f*L,
where f is the frequency. So, if the frequency is doubled than also the inductive reactance is doubled.
This would be called the law of action-reaction. This states that every action will have an equal and opposite reaction. The action in the example is pulling down on the rope. The opposite and equal reaction is the climers body moving upward. The same law can be applied to a rocket. The action is the engines pushing down and the reaction is the rocket going up. :D
Bump: Bumping the ball means a player uses their forearms to pass the ball to a teammate or to hit the ball back over the net to the other team. Set: Setting the ball means a player positions the ball in a way that lets a teammate spike it over the net.
The correct answer is B.
Let us think of the classical theory first. In the classical theory, light is a wave that gives energy. This energy gradually helps the electron jump to a higher energy level.
In quantum theory, this is wrong; an electron cannot absorb a small amout of energy because there is not close enough state to jump to with that energy; only very specific amounts of energy lead to a change in orbital levels/ absorbance of energy. Also, each pair of energy levels has a specific energy difference that is needed from an electron so that it can move.
Hence, B is correct; all other sentences describe classical models of light-electron interactions