a) The limit of the position of particle
when time approaches 2 is
.
b) The velocity of particle
is
for all
.
c) The rate of change of the distance between particle
and particle
at time
is
.
<h3>
How to apply limits and derivatives to the study of particle motion</h3>
a) To determine the limit for
, we need to apply the following two <em>algebraic</em> substitutions:
(1)
(2)
Then, the limit is written as follows:
![x(t) = \lim_{t \to 2} \frac{\sin \pi t}{2-t}](https://tex.z-dn.net/?f=x%28t%29%20%3D%20%20%5Clim_%7Bt%20%5Cto%202%7D%20%5Cfrac%7B%5Csin%20%5Cpi%20t%7D%7B2-t%7D)
![x(t) = \lim_{t \to 2} \frac{\pi\cdot \sin \pi t}{2\pi - \pi t}](https://tex.z-dn.net/?f=x%28t%29%20%3D%20%20%5Clim_%7Bt%20%5Cto%202%7D%20%5Cfrac%7B%5Cpi%5Ccdot%20%5Csin%20%5Cpi%20t%7D%7B2%5Cpi%20-%20%5Cpi%20t%7D)
![x(u) = \lim_{u \to 2\pi} \frac{\pi\cdot \sin u}{2\pi - u}](https://tex.z-dn.net/?f=x%28u%29%20%3D%20%20%5Clim_%7Bu%20%5Cto%202%5Cpi%7D%20%5Cfrac%7B%5Cpi%5Ccdot%20%5Csin%20u%7D%7B2%5Cpi%20-%20u%7D)
![x(k) = \lim_{k \to 0} \frac{\pi\cdot \sin (2\pi-k)}{k}](https://tex.z-dn.net/?f=x%28k%29%20%3D%20%20%5Clim_%7Bk%20%5Cto%200%7D%20%5Cfrac%7B%5Cpi%5Ccdot%20%5Csin%20%282%5Cpi-k%29%7D%7Bk%7D)
![x(k) = -\pi\cdot \lim_{k \to 0} \frac{\sin k}{k}](https://tex.z-dn.net/?f=x%28k%29%20%3D%20%20-%5Cpi%5Ccdot%20%20%5Clim_%7Bk%20%5Cto%200%7D%20%5Cfrac%7B%5Csin%20k%7D%7Bk%7D)
![x(k) = -\pi](https://tex.z-dn.net/?f=x%28k%29%20%3D%20-%5Cpi)
The limit of the position of particle
when time approaches 2 is
. ![\blacksquare](https://tex.z-dn.net/?f=%5Cblacksquare)
b) The function velocity of particle
is determined by the <em>derivative</em> formula for the division between two functions, that is:
(3)
Where:
- Function numerator.
- Function denominator.
- First derivative of the function numerator.
- First derivative of the function denominator.
If we know that
,
,
and
, then the function velocity of the particle is:
![v_{Q}(t) = \frac{\pi \cdot \cos \pi t \cdot (2-t)-\sin \pi t}{(2-t)^{2}}](https://tex.z-dn.net/?f=v_%7BQ%7D%28t%29%20%3D%20%5Cfrac%7B%5Cpi%20%5Ccdot%20%5Ccos%20%5Cpi%20t%20%5Ccdot%20%282-t%29-%5Csin%20%5Cpi%20t%7D%7B%282-t%29%5E%7B2%7D%7D)
![v_{Q}(t) = \frac{2\pi\cdot \cos \pi t-\pi\cdot t \cdot \cos \pi t -\sin \pi t}{(2-t)^{2}}](https://tex.z-dn.net/?f=v_%7BQ%7D%28t%29%20%3D%20%5Cfrac%7B2%5Cpi%5Ccdot%20%5Ccos%20%5Cpi%20t-%5Cpi%5Ccdot%20t%20%5Ccdot%20%5Ccos%20%5Cpi%20t%20-%5Csin%20%5Cpi%20t%7D%7B%282-t%29%5E%7B2%7D%7D)
The velocity of particle
is
for all
. ![\blacksquare](https://tex.z-dn.net/?f=%5Cblacksquare)
c) The vector <em>rate of change</em> of the distance between particle P and particle Q (
) is equal to the <em>vectorial</em> difference between respective vectors <em>velocity</em>:
(4)
Where
is the vector <em>velocity</em> of particle P.
If we know that
,
and
, then the vector rate of change of the distance between the two particles:
![\dot r_{P/Q}(t) = \left(\frac{2\pi \cdot \cos \pi t - \pi\cdot t \cdot \cos \pi t + \sin \pi t}{(2-t)^{2}}, -4 \right)](https://tex.z-dn.net/?f=%5Cdot%20r_%7BP%2FQ%7D%28t%29%20%3D%20%5Cleft%28%5Cfrac%7B2%5Cpi%20%5Ccdot%20%5Ccos%20%5Cpi%20t%20-%20%5Cpi%5Ccdot%20t%20%5Ccdot%20%5Ccos%20%5Cpi%20t%20%2B%20%5Csin%20%5Cpi%20t%7D%7B%282-t%29%5E%7B2%7D%7D%2C%20-4%20%5Cright%29)
![\dot r_{Q/P}\left(\frac{1}{2} \right) = \left(\frac{2\pi\cdot \cos \frac{\pi}{2}-\frac{\pi}{2}\cdot \cos \frac{\pi}{2} +\sin \frac{\pi}{2}}{\frac{3}{2} ^{2}}, -4 \right)](https://tex.z-dn.net/?f=%5Cdot%20r_%7BQ%2FP%7D%5Cleft%28%5Cfrac%7B1%7D%7B2%7D%20%5Cright%29%20%3D%20%5Cleft%28%5Cfrac%7B2%5Cpi%5Ccdot%20%5Ccos%20%5Cfrac%7B%5Cpi%7D%7B2%7D-%5Cfrac%7B%5Cpi%7D%7B2%7D%5Ccdot%20%5Ccos%20%5Cfrac%7B%5Cpi%7D%7B2%7D%20%2B%5Csin%20%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%7B%5Cfrac%7B3%7D%7B2%7D%20%5E%7B2%7D%7D%2C%20-4%20%5Cright%29)
![\dot r_{Q/P} \left(\frac{1}{2} \right) = \left(\frac{4}{9}, -4 \right)](https://tex.z-dn.net/?f=%5Cdot%20r_%7BQ%2FP%7D%20%5Cleft%28%5Cfrac%7B1%7D%7B2%7D%20%5Cright%29%20%3D%20%5Cleft%28%5Cfrac%7B4%7D%7B9%7D%2C%20-4%20%5Cright%29)
The magnitude of the vector <em>rate of change</em> is determined by Pythagorean theorem:
![|\dot r_{Q/P}| = \sqrt{\left(\frac{4}{9} \right)^{2}+(-4)^{2}}](https://tex.z-dn.net/?f=%7C%5Cdot%20r_%7BQ%2FP%7D%7C%20%3D%20%5Csqrt%7B%5Cleft%28%5Cfrac%7B4%7D%7B9%7D%20%5Cright%29%5E%7B2%7D%2B%28-4%29%5E%7B2%7D%7D)
![|\dot r_{Q/P}| = \frac{4\sqrt{82}}{9}](https://tex.z-dn.net/?f=%7C%5Cdot%20r_%7BQ%2FP%7D%7C%20%3D%20%5Cfrac%7B4%5Csqrt%7B82%7D%7D%7B9%7D)
The rate of change of the distance between particle
and particle
at time
is
.
<h3>
Remark</h3>
The statement is incomplete and poorly formatted. Correct form is shown below:
<em>Particle </em>
<em> moves along the y-axis so that its position at time </em>
<em> is given by </em>
<em> for all times </em>
<em>. A second particle, </em>
<em>, moves along the x-axis so that its position at time </em>
<em> is given by </em>
<em> for all times </em>
<em>. </em>
<em />
<em>a)</em><em> As times approaches 2, what is the limit of the position of particle </em>
<em> Show the work that leads to your answer. </em>
<em />
<em>b) </em><em>Show that the velocity of particle </em>
<em> is given by </em>
<em>.</em>
<em />
<em>c)</em><em> Find the rate of change of the distance between particle </em>
<em> and particle </em>
<em> at time </em>
<em>. Show the work that leads to your answer.</em>
To learn more on derivatives, we kindly invite to check this verified question: brainly.com/question/2788760