The value of x in the congruent triangles abc and dec is 1
<h3>How to determine the value x?</h3>
The question implies that the triangles abc and dec are congruent triangles.
The congruent sides are:
ab = de
bc = ce = 4
ac = cd = 5
The congruent side ab = de implies that:
4x - 1 = x + 2
Collect like terms
4x - x = 2 + 1
Evaluate the like terms
3x = 3
Divide through by 3
x = 1
Hence, the value of x is 1
Read more about congruent triangles at:
brainly.com/question/12413243
#SPJ1
<u>Complete question</u>
Two triangles, abc and cde, share a common vertex c on a grid. in triangle abc, side ab is 4x - 1, side bc is 4, side ac is 5. in triangle cde, side cd is 5, side de is x + 2, side ce is 4. If Δabc ≅ Δdec, what is the value of x? a. x = 8 b. x = 5 c. x = 4 d. x = 1 e. x = 2
Answer:
B. x < 24
Step-by-step explanation:
16 > - 8 + x
+8 > +8 + x Add 8 to both sides
24 > x
Final answer: x < 24
Answer:
17
Step-by-step explanation:
The top angle is 90 degrees, so I would assume that m<1 is 90 degrees. Plugging this into the equation gives us 90 = 4y + 22. Subtract 22 from both sides, and we get 68 = 4y. Divide both sides by 4, and we get 17 = y.
Integers are closed under subtraction.
Answer:

Step-by-step explanation:
Given


Required
Determine LN
Since LM is a bisector, then we have:
(See attachment for illustration)

Collect Like Terms


Solve for w


LN is calculated as thus:

Substitute 4 for w


