1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
soldier1979 [14.2K]
3 years ago
12

The perimeter of a room is 43 ft. The width is 9 1 2ft. What is the length?

Mathematics
2 answers:
andreev551 [17]3 years ago
7 0

<em>answer = 12 \: ft \\ solution \\ perimeter = 43 ft\\ breadth = 9 \times \frac{1}{2} =  \frac{19}{2 }    = 9.5 \: ft\\  now \\ perimeter \: of \: \: rectangle = 2(l + b) \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: or \:  43= 2(l + 9.5) \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: or \: 43 = 2l + 19 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: or \:  - 2l = 19 - 43 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: or \:  - 2l =  - 24 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: or \: l =  \frac{ - 24}{ - 2}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: l = 12 \: ft \\ hope \: it \: helps \\ good \: luck \: on \: your \: assignment</em>

Anettt [7]3 years ago
3 0

Answer:

length = 12ft

Step-by-step explanation:

Given that,

width =9  \frac{1}{2}  = 9.5

Let's find the length

perimeter \\43  = 2(l + w) \\  43= 2(l + 9.5) \\ 43 = 2l + 19 \\ 43 - 19 = 2l \\ 24 = 2l \\  \frac{24}{2}  =  \frac{2l}{2}  \\ l = 12

<em>hope</em><em> </em><em>this</em><em> </em><em>helps</em>

<em> </em><em>brainliest</em><em> </em><em>appreciated</em>

<em>good</em><em> </em><em>luck</em><em>!</em><em> </em><em>have</em><em> </em><em>a</em><em> </em><em>nice</em><em> </em><em>day</em><em>!</em><em> </em>

You might be interested in
What is equivalent 24 1/3
sertanlavr [38]

Answer:

241/3

Trying to find the cube root of 24

Factor 24

one of the factors should be a perfect cube and one will not

Of course you can also try cubing the choices given one of them will equal 24

Give it a try

I hope this helps

4 0
3 years ago
Identify The missing angle<br> Can you show ur work how u did it?
Monica [59]

Answer:

x = 38°

Step-by-step explanation:

in the given question,

the two angles are complementary, because sum of their measures = 90°

so,

=》52° + x = 90°

=》x = 90° - 52°

=》x = 38°

8 0
3 years ago
Read 2 more answers
X^2=25 (round to the nearest hundreth) ​
EastWind [94]

Answer:

+-5

Step-by-step explanation:

x^{2}=25

Square both sides to get...

x= \sqrt{25\\}

To simplify it, we know that 5*5=25 so..

\sqrt{25} = 5

And don't forget it can be -5 or 5

5 0
3 years ago
Read 2 more answers
The first number is the LCM of 11 and 5​
Annette [7]

Answer:55

Step-by-step explanation:

7 0
3 years ago
Find cos y and tan y if csc y = -√6/2 and cot y &gt;0.
fomenos

Answer:

\cos y = -\dfrac{\sqrt{3}  }{3}

\tan y = \sqrt{2}

Step-by-step explanation:

Recall that

\boxed{\csc y := \dfrac{1}{\sin y}}

\boxed{\cot y := \dfrac{\cos y}{\sin y}}

We know that

\csc y = \dfrac{-\sqrt{6} }{2}

Note that according to the definition of \csc y it is true that both sine and cosine are negative, once \csc y = \dfrac{-\sqrt{6} }{2} . Because \cot y > 0, this conclusion is true. We basically have

\boxed{(-a)(1/-b)=a/b \text{ such that } a,b\in\mathbb{R}_{\geq 0}}

Sure it is true \forall y\in\mathbb{R} but perhaps this way is better to understand.

In order to find sine, we can use the definition and manipulate the rational expression.

\csc y = \dfrac{-\sqrt{6} }{2} =  \dfrac{-\sqrt{6} / -\sqrt{6} }{2/-\sqrt{6} } = \dfrac{1 }{-\dfrac{2}{\sqrt{6} } }

Therefore,

\sin y =-\dfrac{2}{\sqrt{6} }

Here I just divided numerator and denominator by -\sqrt{6}.

Now, to find cosine we can use the identity

\boxed{\sin^2y +\cos ^2y =1}

Thus,

\left(-\dfrac{2}{\sqrt{6} }\right)^2 + \cos ^2y =1 \implies  \dfrac{4}{6 } +\cos ^2y =1

\implies  \cos ^2y =1 - \dfrac{4}{6 } \implies \cos ^2y  =\dfrac{1}{3 }   \implies  \cos y =    \pm \dfrac{\sqrt{1} }{\sqrt{3} } =  \pm \dfrac{\sqrt{1} \sqrt{3} }{3} = \pm  \dfrac{\sqrt{3}  }{3}

\cos y = \pm\dfrac{\sqrt{3}  }{3}

Once we have \cot y > 0, we just consider

\cos y = -\dfrac{\sqrt{3}  }{3}

FInally, for tangent, just consider

\boxed{\tan y := \dfrac{\sin y}{\cos y}}

thus,

\tan y = \dfrac{\sin y}{\cos y} = \dfrac{-\frac{2}{\sqrt{6} }}{-\frac{\sqrt{3}  }{3}} = \dfrac{6}{\sqrt{18} } =\dfrac{6}{3\sqrt{2} } =\dfrac{2}{\sqrt{2} } = \sqrt{2}

5 0
3 years ago
Other questions:
  • Find the value of each variable for the right triangles. Make sure all answers are in reduced radical form. Show your work.
    5·1 answer
  • 15 children voted for their favorite color. The votes for red and blue together we're double the votes for green and yellow toge
    11·2 answers
  • Please find Perpendicular bisector of the segment<br> with endpoints (-2,4) and (6,10)
    6·1 answer
  • Draw quick pictures and write to tell how you would add 342 and 416
    9·2 answers
  • Solve for m:<br> F=GMm/r^2
    11·1 answer
  • A medical researcher tested a new treatment for poison ivy against the traditional ointment. He concluded that the new treatment
    14·1 answer
  • Which inequality is equivalent to <br> −4t≥28<br> ?
    5·1 answer
  • What is the equation of the line perpendicular to the line y = 3x + 2 and passing through the point (3, -4)?
    7·1 answer
  • Helpp me nowwwwwww dew Help Marshmello i wasn't born yesterday. xd
    8·2 answers
  • Please help me solve this it’s due in an hour
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!