Answer:
0.0375 moles HBr
Explanation:
we are given;
- Molarity of HBr solution as 0.15 M
- Volume of the solution as 250 mL
We are required to determine the number of moles;
We need to know that;
Molarity = Moles ÷ Volume
Therefore;
Moles of HBr = Molarity of HBr solution × Volume of solution
Thus;
Moles of HBr = 0.15 M × 0.25 L
= 0.0375 Moles
Thus, the number of moles of HBr solute is 0.0375 moles
Answer: The statement, average kinetic energy of the gas particles is greater in container A because its particles move faster is correct.
Explanation:
Kinetic energy is the energy obtained due to the motion of an object or substance.

where,
T = temperature
This means that kinetic energy is directly proportional to temperature.
So, when heat is provided to container A then its molecules will start to move rapidly from one place to another which will cause more collisions between the atoms.
Hence, average kinetic energy will be more in container A.
Whereas container B is placed at room temperature which is low than that in container A. So, molecules in container B will move at almost same speed and therefore, specific collisions will be there. So, average kinetic energy in container B will be less than that in container A.
Thus, we can conclude that the statement, average kinetic energy of the gas particles is greater in container A because its particles move faster is correct.
Answer:
The volume (mL) of 0.135 M NaOH that is required to neutralize 13.7 mL of 0.129 M HCl is 13.1 mL (option b).
Explanation:
The reaction between an acid and a base is called neutralization, forming a salt and water.
Salt is an ionic compound made up of an anion (positively charged ion) from the base and a cation (negatively charged ion) from the acid.
When an acid is neutralized, the amount of base added must equal the amount of acid initially present. This base quantity is said to be the equivalent quantity. In other words, at the equivalence point the stoichiometry of the reaction is exactly fulfilled (there are no limiting or excess reagents), therefore the numbers of moles of both will be in stoichiometric relationship. So:
V acid *M acid = V base *M base
where V represents the volume of solution and M the molar concentration of said solution.
In this case:
- V acid= 13.7 mL= 0.0137 L (being 1,000 mL= 1 L)
- M acid= 0.129 M
- V base= ?
- M base= 0.135 M
Replacing:
0.0137 L* 0.129 M= V base* 0.135 M
Solving:

V base=0.0131 L = 13.1 mL
<u><em>
The volume (mL) of 0.135 M NaOH that is required to neutralize 13.7 mL of 0.129 M HCl is 13.1 mL (option b).</em></u>
Answer:
you can solve the rest of the equation. I only reduced it to that much to show you how to derive it
To know the answer, you either know what is really the
nature and chemistry of a sugar solution. You can also know the answer by
knowing the meaning of entropy. Entropy is often interpreted as the degree of
disorder or randomness in the system. So the correct statement is that the
system becomes more disordered and has an increase in entropy.