Answer:
Your correct answer is A. 1,2,1,2
Explanation:
Please mark brainliest!
A sample of a compound contains 60.0 g C and 5.05 g H.
divide by molar mass of C(12) and H(1) to get molar ratio
C: 60/12=5 and H: 5/1=5
so C:H=5:5=1:1
total molar mass=78
divide by 1C+1H to find the formula: 78/(12+1)=78/13=6
compound is C6H6
Answer:
1. Ionic bonding
2. Covalent bonding
3. Metallic bonding
Explanation:
Ionic bonding also referred to as electrovalent bonding is a kind of chemical bonding that involves the transfer of electrons between the valence shells of two elements with a large electronegativity difference usually a metal and a nonmetal.
For example an ionic bonding scenario might play out between a group one metal and a group seven halogen. While group one metals have one electron hindering their stability, group seven halogens need that one electron that could make them achieve this stability. It is this that causes them to come together in a way where the electron is transferred completely from the valence shell of the group 1 atom and accepted into the valence shell of the group 7 halogen.
Covalent bonding involves the sharing of electrons between atoms of comparable electronegativities. The electro negativity difference is not large enough to permit the total movement of the electrons and hence the electrons are then controlled by the nuclei of the two atoms
Between two metals, what we have is called the metallic bonding
Answer:
Mass of NH₃ produced = 34 g
Explanation:
Given data:
Mass of nitrogen = 28 g
Mass of Hydrogen = 12 g
Mass of NH₃ produced = ?
Solution:
Chemical equation:
N₂ + 3H₂ → 2NH₃
Moles of nitrogen:
Number of moles = mass/molar mass
Number of moles = 28 g/ 28 g/mol
Number of moles = 1 mol
Moles of hydrogen:
Number of moles = mass/molar mass
Number of moles = 12 g/ 2 g/mol
Number of moles = 6 mol
Now we will compare the moles of hydrogen and nitrogen with ammonia.
H₂ : NH₃
3 : 2
6 : 2/3×6 = 4 mol
N₂ : NH₃
1 : 2
Number of moles of ammonia produced by nitrogen are less thus it will act as limiting reactant.
Mass of ammonia produced:
Mass = number of moles × molar mass
Mass = 2 mol × 17 g/mol
Mass = 34 g