1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lyrx [107]
3 years ago
11

Willie, in a 100.0 m race, initially accelerates uniformly from rest at 2.00 m/s2 until reaching his top speed of 12.0 m/s. He m

aintained this speed until he is 16.0 m from the finish line but then fades and decelerates uniformly, crossing the line with a speed of only 8.00 m/s. What is Willie’s total time for the race? Please show your steps :)
Physics
1 answer:
Oduvanchick [21]3 years ago
6 0

Answer:

The total time for the race is 11.6 seconds

Explanation:

The parameters given are;

Total distance ran by Willie = 100.0 m

Initial acceleration = 2.00m/s²

Top speed reached with initial acceleration = 12.0 m/s

Point where Willie start to fade and decelerate = 16.0 m from the finish line

Speed with which Willie crosses the finish line = 8.00 m/s

The time and distance covered with the initial acceleration are found using the following equations of motion;

v = u₀ + a·t

v² = u₀² + 2·a·s

Where:

v = Final velocity reached with the initial acceleration = 12.0 m/s

u₀ = Initial velocity at the start of the race = 0 m/s

t = Time during acceleration

a = Initial acceleration = 2.00 m/s²

s = Distance covered during the period of initial acceleration

From, v = u₀ + a·t, we have;

12 = 0 + 2×t

t = 12/2 = 6 seconds

From, v² = u₀² + 2·a·s, we have;

12² = 0² + 2×2×s

144 = 4×s

s = 144/4 =36 meters

Given that the Willie maintained the top speed of 12.0 m/s until he was 16.0 m from the finish line, we have;

Distance covered at top speed = 100 - 36 - 16 = 48 meters

Time, t_t of running at top speed = Distance/velocity = 48/12 = 4 seconds

The deceleration from top speed to crossing the line is found as follows;

v₁² = u₁² + 2·a₁·s₁

Where:

u₁ = v = 12 m/s

v₁ = The speed with which Willie crosses the line = 8.00 m/s

s₁ = Distance covered during decelerating = 16.0 m

a₁ = Deceleration

From which we have;

8² = 12² + 2 × a × 16

64 = 144 + 32·a

64 - 144 = 32·a

32·a = -80

a = -80/32 = -2.5 m/s²

From, v₁ = u₁ + a₁·t₁

Where:

t₁ = Time of deceleration

We have;

8 = 12 + (-2.5)·t₁

t₁ = (8 - 12)/(-2.5) = 1.6 seconds

The total time = t + t_t + t₁ =6 + 4 + 1.6 = 11.6 seconds.

You might be interested in
Derek is watching steam form swirling patterns above the boiling water in his beaker.
Ierofanga [76]

Answer:

Convection

Explanation:

4 0
3 years ago
Which of the following types of technologies has best helped scientists to study very high-energy objects in outer space, such a
erica [24]

Very high-energy objects and events spit out very high-energy photons, so the instrument you need in order to detect them is the       X-ray telescope. <em>(C)  </em>

Inconveniently, X-ray telescopes only work when they're up in orbit, because X-rays get seriously soaked up in Earth's atmosphere, and most of them never make it down to the surface ... (lucky for us !) .

3 0
3 years ago
Read 2 more answers
What is the kinetic energy of a 150 gram object moving at a velocity of 100 m/s?
Alex Ar [27]

Answer:

750 J

Explanation:

lets convert mass into kg first , 150 /1000 = 0.15 kg

kinetic energy =  \frac{mv^{2} }{2} =  \frac{0.15*100^{2} }{2}  = 750 J

3 0
3 years ago
g Which of the following is true about magnetic field lines? A. All magnetic field lines are always parallel to the Earth’s magn
Goshia [24]

Answer:B

Explanation:

Magnetic field lines form close loops and never intercept

3 0
3 years ago
A coaxial cable consists of a solid inner cylindrical conductor of radius 2 mm and an outer cylindrical shell of inner radius 3
4vir4ik [10]

Answer:

d) 1.2 mT

Explanation:

Here we want to find the magnitude of the magnetic field at a distance of 2.5 mm from the axis of the coaxial cable.

First of all, we observe that:

- The internal cylindrical conductor of radius 2 mm can be treated as a conductive wire placed at the axis of the cable, since here we are analyzing the field outside the radius of the conductor. The current flowing in this conductor is

I = 15 A

- The external conductor, of radius between 3 mm and 3.5 mm, does not contribute to the field at r = 2.5 mm, since 2.5 mm is situated before the inner shell of the conductor (at 3 mm).

Therefore, the net magnetic field is just given by the internal conductor. The magnetic field produced by a wire is given by

B=\frac{\mu_0 I}{2\pi r}

where

\mu_0 is the vacuum permeability

I = 15 A is the current in the conductor

r = 2.5 mm = 0.0025 m is the distance from the axis at which we want to calculate the field

Substituting, we find:

B=\frac{(4\pi\cdot 10^{-7})(15)}{2\pi(0.0025)}=1.2\cdot 10^{-3}T = 1.2 mT

8 0
3 years ago
Other questions:
  • A farm tractor tows a 3300-kg trailer up a 14" incline with a steady speed of 2.8 m/s. what force does the tractor exert on the
    12·1 answer
  • There are many units of pressure. The standard one is Pa. Express Pa using only the fundamental units of meters, kilograms and s
    13·1 answer
  • A flashlight is an example of
    11·1 answer
  • If F1 is the magnitude of the force exerted by the Earth on a satellite in orbit about the Earth and F2 is the magnitude of the
    11·1 answer
  • How do I solve using the formula:<br><br> Vf^2=vo^2+2gh<br><br> ^2 means square
    10·1 answer
  • An object that does not allow light to pass through it is
    5·2 answers
  • I need help solving the equation 2Na(s)+Cl2(g)&gt;2NaCl(s)
    5·1 answer
  • Andy has two samples of liquids. Sample A has a pH of 4, and sample B has a pH of 6. What can Andy conclude about these two samp
    8·1 answer
  • An object has a net force. The net force points in the south west direciton. Knowing this, what can you can you conclude about t
    10·1 answer
  • What energy is this in the image
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!