Vinegar pH 3.2: Weak acid
Battery acid pH 0.5: Strong acid
Shampoo pH 7.0: Neutral
Ammonia pH 11.1 Strong base
Answer:
357 g of the transition metal are present in 630 grams of the compound of the transition metal and iodine
Explanation:
In any sample of the compound, the percentage by mass of the transition metal is 56.7%. This means that for a 100 g sample of the compound, 56.7 g is the metal while the remaining mass, 43.3 g is iodine.
Given mass of sample compound = 630 g
Calculating the mass of iodine present involves multiplying the percentage by mass composition of the metal by the mass of the given sample;
56.7 % = 56.7/100 = 0.567
Mass of transition metal = 0.567 * 630 = 357.21 g
Therefore, the mass of the transition metal present in 630 g of the compound is approximately 357 g
NaOH+HCl-> NaCl+H2O
1 mole of NaOH
1 mole of HCl.
To calculate volume of NaOH
CaVa/CbVb= Na/Nb
Where Ca=2M
Cb=1M
Va=200cm³
Vb=xcm³
Substitute into the equation.
2×200/1×Vb=1/1
400/Vb=1/1
Cross multiply
Vb×1=400×1
Vb=400cm³
To calculate the mass of sodium chloride, NaCl from the neutralization rxn.
Mole of NaCl=1
Molar mass of NaCl= 23+35.5=58.5
Mass=xgrammes.
Mass of NaCl=Number of moles × Molar mass.
Substitute
Mass of NaCl= 1×58.5
=58.5g
This is what I could come up with.