Answer:
The square root of the molar mass of B ÷ the square root of the molar mass of A
Explanation:
Graham’s Law applies to the effusion of gases:
The rate of effusion (r) of a gas is inversely proportional to the square root of its molar mass (M).
If you have two gases A and B, the ratio of their rates of effusion is

To solve this we assume
that the gas is an ideal gas. Then, we can use the ideal gas equation which is
expressed as PV = nRT. At a constant temperature and number of moles of the gas
the product of PV is equal to some constant. At another set of condition of
temperature, the constant is still the same. Calculations are as follows:
P1V1 =P2V2
<span>P2 = P1V1/V2</span>
<span>
</span>
<span>The correct answer is the first option. Pressure would increase. This can be seen from the equation above where V2 is indirectly proportional to P2.</span>
Answer:flashover
Explanation: flashover are event that occurs when all of the combustible materials in a room reach their ignition temperatures at the same time