Answer:
(A) L = 115.3kgm²/s
(B) dL/dt = 94.1kgm²/s²
Explanation:
The magnitude of the angular momentum of the rock is given by the foemula
L = mvrSinθ
We have been given θ = 36.9°, m = 2.0kg, v = 12.0m/s and r = 8.0m.
Therefore L = 2.00 × 12 × 8.0 × Sin 36.9° =
115.3 kgm²/s
(B) The magnitude of the rate of angular change in momentum is given by
dL /dt = d(mvrSinθ)/dt = mgrSinθ = 2.00 × 9.8 × 8.0× Sin36.9 = 94.1kgm²/s²
Answer:
c. Case iii
Explanation:
the ball will experience the largest change in case iii
It would probably be D. because that would be a waste of the water, and it's not helping conserve it.
The answer is high temperatures