Answer:
Momentum of block B after collision =
Explanation:
Given
Before collision:
Momentum of block A =
= 
Momentum of block B =
= 
After collision:
Momentum of block A =
= 
Applying law of conservation of momentum to find momentum of block B after collision
.

Plugging in the given values and simplifying.


Adding 200 to both sides.


∴ 
Momentum of block B after collision =
Answer:
i think its C hope this is rhight have a good day
Explanation:
<h2>Answer</h2>
1m/s
<h2>Explanation</h2>
Given that:
<em>Mass of first blob = 2kg = m1</em>
<em>Velocity of blob = 4m/s = v1</em>
<em>Mass of second blob = 6kg = m2</em>
<em>Velocity of blob = 0m/s = v2</em>
<em />
To find:
<em>Final velocity = Vf</em>
<em />
<em>This question is of inelastic collision which is any collision between objects in which some energy is lost.</em>
<em />
<h3>Formula to be use:</h3><h2>(m1*v1) + (m2*V2) = Vf(m1 + m2)</h2>
(2*4) + (6*0) = Vf(2+6)
8 + 0 = Vf(8)
8 = Vf(8)
Vf = 1 m/s
So the speed of two blobs immediately after colliding = 1 m/s
Answer: 258.3 s
Explanation:
The speed
is given by the following equation:

Where:
is the speed of light in vacuum
is the double of the distance between Earth and Moon, since the beam of light travels from Earth to the Moon and back to Earth again.
is the time it takes to the beam of light to travel the mentioned distance
Isolating
and solving with the given information:


Finally:
