1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andriy [413]
3 years ago
9

What is the tension in the cord after the system is released from rest? Both masses (A and B) are 10-kg.

Physics
1 answer:
lara31 [8.8K]3 years ago
4 0

Answer:

98 N.

Explanation:

Given data: mass= 10 kg,      gravity= 9.8 m/s2

required: tension in the cord=  ?

solution:

formula of tension= mass x gravity

by putting values of mass and gravity, we get

tension= 10 x 9.8

tension= 98 N.  <u>Ans</u>

If the mass of the object which is attached with both ends of cord is 10 kg, so the tension which is a opposite force of weight is 98 N.

You might be interested in
A 97.0 kg ice hockey player hits a 0.150 kg puck, giving the puck a velocity of 48.0 m/s. If both are initially at rest and if t
OverLord2011 [107]

Answer:

s₁ = 0.022 m

Explanation:

From the law of conservation of momentum:

m_1u_1 + m_2u_2 = m_1v_1+m_2v_2

where,

m₁ = mass of hockey player = 97 kg

m₂ = mass of puck = 0.15 kg

u₁ = u₂ = initial velocities of puck and player = 0 m/s

v₁ = velocity of player after collision = ?

v₂ = velocity of puck after hitting = 48 m/s

Therefore,

(97\ kg)(0\ m/s)+(0.15\ kg)(0\ m/s)=(97\ kg)(v_1)+(0.15\ kg)(48\ m/s)\\\\v_1 = -\frac{(0.15\ kg)(48\ m/s)}{97\ kg} \\v_1 = - 0.074 m/s

negative sign here shows the opposite direction.

Now, we calculate the time taken by puck to move 14.5 m:

s_2 =v_2t\\\\t = \frac{s_2}{v_2} = \frac{14.5\ m}{48\ m/s} \\\\t =  0.3\ s

Now, the distance covered by the player in this time will be:

s_1 = v_1t\\s_1 = (0.074\ m/s)(0.3\ s)

<u>s₁ = 0.022 m</u>

4 0
3 years ago
a 5.5 g dart is fired into a block of wood with a mass of 22.6 g. the wood block is initially at rest on a 1.5 m tall post. afte
IgorLugansk [536]
<span>From the problem alone we can say that the dart and the block of wood combined into a single object moving together at the end. With that clue we know that the collision is an inelastic collision. The formula of an inelastic collision is:

m_{1}v_{1i}+m_{2}v_{2i}=(m_{1}+m_{2})v_{f}

First let us sort out our given:Mass should be in kg to get the proper answer. Now let's assign m1 as the mass of the dart and m2 as the mass of the block. 
m1 = 5.5g

5.5g x \frac{1kg}{1000g}= 0.0055kg

m2 = 22.6g

22.6g x \frac{1kg}{1000g}= 0.0226kg

So now we settled that we can set our given as:
M1 = .0055 kg
v1i = ?
M2 = 0.0226 kg
v2i = 0 m/s
dx = 2.5 m
dy = -1.5 m

Now you can see that we have 2 unknowns: v1i and vf. We need the vf to solve for the initial velocity of the dart or object 1. We have other given to consider, so we can make use of that to get our missing vf. 

Now, vf is the horizontal velocity after the collision. We do this by first using the equations for projectiles considering that we have an x and y dimension to consider. We use the y dimension to get the x. 
</span>

dy = -1.5 m 

a = 9.8m/s^2

viy = 0 (take note that the initial vertical velocity is 0)

t = ?

<span>We can use the UAM equations to solve for the time in the y-dimension (vertical) to get the horizontal velocity. 

dy = v_{iy}t +  \frac{1}{2} at^{2}</span>

1.5 = (0)t+\frac{1}{2} (9.8)t^{2}

<span>1.5 = \frac{1}{2} (9.8)t^{2}

\frac{(2)(1.5)}{9.8}=t^{2}

\frac{(3)}{9.8}=t^{2}

\sqrt{0.3061} = \sqrt{t^{2}

0.553s = t

Now using this, we can get the horizontal (x-dimension) velocity using the formula:
v_{x} =d_{x}t and our given earlier for the horizontal distance is 2.5m and we solved for time 0.553s. Let's put that into our equation:
v_{x} =d_{x}t
v_{x} =(2.5m)(0.553s) 
v_{x} =4.52m/s

Now we finally have our vf or velocity after the collision. Now let's get back to the equation.

m_{1}v_{1i}+m_{2}v_{2i}=(m_{1}+m_{2})v_{f}

From this we can derive the equation for v1i by isolating it. 

v_{1i}= \frac{((m_{1}+m_{2})v_{f})-(m_{2}v_{2i})}{m_{1}}

Now let's put in all our given and what we solved:

v_{1i}= \frac{((0.0055kg+0.0226kg)4.52m/s)-((0.0226kg)0m/s)}{0.0055kg}

v_{1i}= \frac{(0.0281kg)4.52m/s)}{0.0055kg}

v_{1i}= \frac{0.127012kg.m/s}{0.0055kg}

v_{1i}= 23.09m/s

The initial speed of the dart is 23.09 m/s or 23.10 m/s.</span>
7 0
3 years ago
The equipotential surfaces surrounding a point charge are concentric spheres with the charge at the center. If the electric pote
tester [92]

Answer:

1.06 m

Explanation:

Since the charge is at the centre of two concentric spheres, we use the formula for electric potential due to a point charge. V = kq/r. Let r₁ be the radius of the sphere with potential, V₁ = 200 V and  r₂ be the radius of the sphere with potential, V₂ = 82.0 V. From V = kq/r, r = kq/V. So that r₁ = kq/V₁ and r₂ = kq/V₂. The magnitude of the difference r₁ - r₂ is the distance between the two surfaces. q the charge equals 1.63 × 10⁻⁸ C

r₂ - r₁ = kq/V₂ - kq/V₁ = kq(1/V₂ - 1/V₁) = 1.63 × 10⁻⁸ × 9 × 10⁹ (1/82 -1/200) m =  1.63 × 10⁻⁸ × 9 × 10⁹ (0.0122 - 0.005) = 1.63 × 10⁻⁸ × 9 × 10⁹(0.0072) m = 1.06 m

The distance between them is 1.06 m

8 0
3 years ago
The mass of a moving object increases, but its speed stays the same. What happens to the kinetic energy of the object as a resul
Ronch [10]
We Know, K.E. = 1/2 × m × v²
From the expression, we can conclude that Kinetic energy is directly proportional to mass. So, as mass will increase, Kinetic energy will also increase.

In short, Your Correct answer would be Option B

Hope this helps!
8 0
3 years ago
Read 2 more answers
An oceanographer is studying how the ion concentration in seawater depends on depth. She makes a measurement by lowering into th
Black_prince [1.1K]

Answer:

a)  R = ρ₀ L /π(r_b² - R_a²) , b)  ρ₀ = V / I    π (r_b² - R_a²) / L

Explanation:

a) The resistance of a material is given by

          R = ρ l / A

where ρ is the resistivity, l is the length and A is the area

the length is l = L and the resistivity is ρ = ρ₀

the area is the area of ​​the cylindrical shell

           A = π r_b² - π r_a²

           A = π (r_b² - r_a²)

we substitute

         R = ρ₀ L /π(r_b² - R_a²)

b) The potential difference is related to current and resistance by ohm's law

         V = i R

         

we subsist the expression of resistance

          V = I ρ₀ L /π (r_b² - R_a²)

           ρ₀ = V / I    π (r_b² - R_a²) / L

6 0
3 years ago
Other questions:
  • What causes two distinct pressure zones between the equator and the poles?
    14·2 answers
  • Which of the following describes an organ system?
    10·2 answers
  • Consider the diver and the board. Which object exerts the action force?
    5·2 answers
  • A magnet is
    5·1 answer
  • Three perfectly polarizing sheets are spaced 2?cm {\rm cm} apart and in parallel planes. The transmission axis of the second she
    10·1 answer
  • A capacitor is made from two hollow, coaxial, iron cylinders, one inside the other. The inner cylinder is negatively charged and
    11·1 answer
  • What does the atomic number of an atom tell us?
    5·2 answers
  • Based on the solubility graph. what effect does increasing the temperature of these substances have in their solubility? does th
    7·1 answer
  • Look at the diagram of a solar eclipse.
    11·1 answer
  • How much energy does a 75-watt light bulb consume while running for 30 minutes<br>​
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!