Answer:
x=22.57 m
Explanation:
Given that
35 m in W of S
angle = 40 degrees
25 m in east
From the diagram
The angle

From the triangle OAB


x=22.57 m
Therefore the answer of the above problem will be 22.57 m
Answer:
(a) 
(b) 
(c) 
Explanation:
(a) According to Newton's second law, the acceleration of a body is directly proportional to the force exerted on it and inversely proportional to it's mass.

(b) According to Newton's third law, the force that the sled exerts on the girl is equal in magnitude but opposite in the direction of the force that the girl exerts on the sled:

(c) Using the kinematics equation:

For the girl, we have
and
. So:

For the sled, we have
. So:

When they meet, the final positions are the same. So, equaling (1) and (2) and solving for t:

Now, we solve (1) for 

Answer:
moving a magnet into a coil of wire in a closed circuit.
Ed 2020
Answer:
the magnitude of the total angular momentum of the blades is <em>743.71 kg·m²</em>
Explanation:
Converting the angular speed into radians per second:
ω = 334 rpm · (2π rad / 1 rev) · (1 min / 60 s)
ω = 34.98 rad/s
The rotational kinetic energy of the blades is given by:
EK = 1/2 I ω²
where
- I is the moment of inertia
- ω is the angular speed
Therefore, rearranging the above equation, we get:
1/2 I ω² = EK
I ω² = 2 EK
I = 2(EK) / ω²
I = 2(4.55 × 10⁵ J) / (34.98 rad/s)²
<em>I = 743.71 kg·m²</em>
<em></em>
Therefore, the magnitude of the total angular momentum of the blades is <em>743.71 kg·m²</em>.
Answer:
1st t=d/s
2nd s=d/t
5th d=st
are all of the variations I came up with
Explanation:
the original formula for speed is s=d/t
then, I created a ratio of s/1=d/t and cross multiplied to find d=st
then, I isolated the t in one side by dividing by s on both sides.