Answer:
The last option, 20 N and 2.04 kg
Explanation:
work = (force)(distance)
work = 120 joules
distance: 6 m
rearrange to find force:
120=(6)F
F= 120/6 = 20 Newtons.
Assuming its lifted from Earth's surface, the force of gravity will be 9.81 m/s^2. Let's find mass:
F=mg
m=F/g
m=(20)/(9.81)= 2.038 kg
Answer:
gravitational potential energy
A step-down transformer has more loops in : A. Primary coil
Primary coil refers to the coil to which alternating voltage is supplied. It's usually connected to the AC supply
hope this helps
Answer:
The solution and the explanation are in the Explanation section.
Explanation:
According to the diagram that is in the attached image, the EFFORT force at point A and the load is at O point. The torque due to weight is:
TA = W * (a * cosθ)
The torque due to effort at C point is:
TC = E * (b * cosθ)
The net torque is equal to 0, we have:
Tnet = 0
W * (a * cosθ) - E * (b * cosθ) = 0
From the figure, you can observe that a/b < 1, thus E < W
1.Use the balance to find the mass of the object. Record the value on the "Density Data Chart."
2.Pour water into a graduated cylinder up to an easily-read value, such as 50 milliliters and record the number.
3.Drop the object into the cylinder and record the new value in millimeters.
4.The difference between the two numbers is the object's volume. Remember that 1 milliliter is equal to 1 cubic centimeter. Record the volume on the data chart.
5.Compute the density of the object by dividing the mass value by the volume value. Record the density on the data chart.