Answer:
The correct answer to the question is objects have zero acceleration.
Explanation:
Before answering the question, first we have to understand dynamic equilibrium .
A body moving with uniform velocity is said to be in dynamic equilibrium if the net external forces acting on the body is zero. Hence, the body is under balanced forces.
If the external forces acting on a body is not balanced, then the body will accelerate which will destroy its equilibrium condition. Hence, the necessary and sufficient condition for a body to be in dynamic equilibrium is that the forces are balanced.
When a body is in dynamic equilibrium, the body moves with uniform velocity along a straight line unless and until it is compelled by some external unbalanced forces.
Hence, the rate of change of velocity or acceleration of the body will be zero.
Complete Question
The complete question is shown on the uploaded image
Answer:
The tension on the shank is 
Explanation:
From the question we are told that
The strain on the strain on the head is 
The contact area is
Looking at the first diagram
At 600 MPa of stress
The strain is 
At 450 MPa of stress
The strain is 
To find the stress at
we use the interpolation method

Substituting values



Generally the force on each head is mathematically represented as

Substituting values


Now the tension on the bolt shank is as a result of the force on the 6 head which is mathematically evaluated as



Answer:
10 m/s
Explanation:
Momentum before collision = momentum after collision
m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂
(8 kg)(8 m/s) + (6 kg)(6 m/s) = (8 kg)(5 m/s) + (6 kg) v
64 kg m/s + 36 kg m/s = 40 kg m/s + (6 kg) v
60 kg m/s = (6 kg) v
v = 10 m/s
This is known as Muscular Endurance.
Hope this helped, and please mark brainliest!
Answer:
The answer to your question is a = 0.25 m/s²
Explanation:
Data
mass = m = 400 kg
Force = F = 100 N
acceleration = a = ? m/s²
Process
To solve this problem use Newton's second law that states that the force applied to an object is directly proportional to the mass of the body times its acceleration.
Formula
F = ma
solve for a
a = 
Substitution

Simplification and result
a = 0.25 m/s²