In Newton's third law, the action and reaction forces D.)act on different objects
Explanation:
Newton's third law of motion states that:
<em>"When an object A exerts a force on object B (action force), then action B exerts an equal and opposite force (reaction force) on object A"</em>
It is important to note from the statement above that the action force and the reaction force always act on different objects. Let's take an example: a man pushing a box. We have:
- Action force: the force applied by the man on the box, forward
- Reaction force: the force applied by the box on the man, backward
As we can see from this example, the action force is applied on the box, while the reaction force is applied on the man: this means that the two forces do not act on the same object. This implies that whenever we draw the free-body diagram of the forces acting on an object, the action and reaction forces never appear in the same diagram, since they act on different objects.
Learn more about Newton's third law of motion:
brainly.com/question/11411375
#LearnwithBrainly
Answer:
A fair test.
Explanation:
Hi, a fair test is used to do scientifically valuable experiments, is a controlled investigation to answer a scientific question.
In a fair test two or more things are compared.
It consists in changing only one factor (the one bieng tested) and keeping all the other conditions the same during an experiment.
The factor is called a variable.
(i) The total capacitance for the circuit is 5 μF.
(ii) The total charge stored in the circuit is 1 x 10⁻⁴ C.
(iii) The charge stored in 3μF capacitor is 6 x 10⁻⁶ C.
<h3>Total capacitance of the circuit</h3>
The total capacitance of the circuit is determined by reolving the series capacitors separate and parallel capacitors separate as well.
<h3>C1 and C2 are in series </h3>

<h3>C1 and C2 are parallel to C3</h3>

<h3>C(123) is series to C5 and C6</h3>

<h3>C7 and C8 are in series</h3>

<h3>Total capaciatnce of the circuit</h3>
Ct + C(78) = 2 μF + 3 μF = 5 μF
<h3 /><h3>Total charge stored in the circuit</h3>
The total charge stored in the capacitor is calculated as follows;
Q = CV
Q = (5 x 10⁻⁶) x (20)
Q = 1 x 10⁻⁴ C
<h3>Charge stored in 3μF capacitor</h3>
Q = (3 x 10⁻⁶) x (20)
Q = 6 x 10⁻⁶ C
Learn more about capacitance of capacitor here: brainly.com/question/13578522
Calm, sunny days with wind moving away from the center.
Its very dense. Hey, are you homeschooled?