This uses the concept of freezing point depression. When faced with this issue, we use the following equation:
ΔT = i·Kf·m
which translates in english to:
Change in freezing point = vant hoff factor * molal freezing point depression constant * molality of solution
Because the freezing point depression is a colligative property, it does not depend on the identity of the molecules, just the number of them.
Now, we know that molality will be constant, and Kf will be constant, so our only unknown is "i", or the van't hoff factor.
The van't hoff factor is the number of atoms that dissociate from each individual molecule. The higher the van't hoff factor, the more depressed the freezing point will be.
NaCl will dissociate into Na+ and Cl-, so it has i = 2
CaCl2 will dissociate into Ca2+ and 2 Cl-, so it has i = 3
AlBr3 will dissociate into Al3+ and 3 Br-, so it has i = 4
Therefore, AlBr3 will lower the freezing point of water the most.
Yes if you search up your subject or topic then put quizlet you’ll find your answer but you may need to login in to get the best experience of studying that you want
Answer:
1.0 ° C
Explanation:
The molar mass for Sodium Nitrate NaNO₃ = (23+14+(16×3)) = 85
Number of moles of NaNO₃ = mass of NaNO₃ /molar mass of NaNO₃
⇒ 17/85 = 1.38 moles
Since 1 mole of NaNO₃ dissolved in 1 cubic decimeter of water, 40 kJ of heat energy is absorbed.
when 1.38 mole of NaNO₃ dissolved in 1 cubic decimeter of water, x kJ of heat energy is absorbed..
Then; x kJ of 1.38 mole of NaNo₃ = 1.38 × 40 kJ =55.2 kJ of heat absorbed.
Using the relation : Q = mcΔT to determine the temperature drop ; we get:
55.2 = 17 × 4 (ΔT)
55.2 = 68 ΔT
ΔT= 0.8 ° C
ΔT ≅ 1.0 ° C
Therefore, the drop in temperature when 17.0g of sodium nitrate is dissolved in 1 cubic decimeter of water is 1.0 ° C
B
Explanation:
Burning is a chemical change and cutting grass is a physical change
The time it took her to drive 2 km is 11.43 seconds, because sonverting kilometers to meters, it is 1000 meters to every kilometer, and she travels 2 kilometers, which is two-thousand meters. Then to find the time you need to divide the time by the speed, and with that you get 11.4285714286, or 11.43 seconds.