1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Colt1911 [192]
3 years ago
9

At some instant, a particle traveling in a horizontal circular path of radius 7.90 m has a total acceleration with a magnitude o

f 15.0 m/s2 and a constant tangential acceleration of 12.0 m/s2. Determine the speed of the particle at this instant and (1/8) revolution later.
Physics
1 answer:
DochEvi [55]3 years ago
5 0

Answer:

a) Speed of the particle at this instant

v = 8.43 m/s

b) Speed of the particle at  (1/8) revolution later

v = 14.83 m/s

Explanation:

We apply the equations of circular motion uniformly accelerated :

(a_{T}) ^{2} = (a_{n} )^{2} +(a_{t} )^{2} Formula (1)

a_{n} = \frac{v^{2} }{r} Formula (2)

a_{t} = \alpha *r Formula (3)

v= ω*r Formula (4)

ω² = ω₀² + 2*α*θ  Formula (5)

Where:

a_{T} :  total acceleration, (m/s²)

a_{n} : normal acceleration, (m/s²)

a_{t} :  tangential acceleration, (m/s²)

\alpha : angular acceleration (rad/s²)

r : radius of the circular path (m)

v : tangential velocity (m/s)

ω : angular speed ( rad/s)

ω₀: initial angular speed  ( rad/s)

θ : angle that the particle travels (rad)

Data:

a_{T} = 15 m/s²

a_{t} =  12 m/s²

r=7.90 m  :radius of the circular path

Problem development

In the formula (1) :

a_{n} = \sqrt{(a_{T})^{2} -(a_{t})^{2} }

We replace the data

a_{n} = \sqrt{(15)^{2} -(12)^{2}}

a_{n} = 9 \frac{m}{s^{2} }

We use formula (2)  to calculate v:

9 = \frac{v^{2} }{7.9}  Equation (1)

a)Speed of the particle at this instant

in the equation (1):

v=\sqrt{9*7.9} = 8.43 \frac{m}{s}

b)Speed of the particle at  (1/8) revolution later

We know the following data:

θ =(1/8) revolution=( 1/8) *2π= π/4

a_{t} =  12 m/s²

v₀= 8.43 m/s

r=7.9 m

We use formula (3) to calculate α

12 = \alpha *7.90

\alpha =\frac{12}{7.9} = 1.52  \frac{rad}{s^{2} }

We use formula (4) to calculate ω₀

v₀= ω₀ *r

8.43 =  ω₀*7.9

ω₀ = 8.43/7.9 = 1.067 rad/s

We use formula (5) to calculate ω

ω² = ω₀² +  2*α*θ  

ω²=  (1.067)² + 2*1.52*π/4

ω² =3.526

ω = 1.87 rad/s

We use formula (4) to calculate v

v= 1.87 rad/s * 7.9m

v = 14.83 m/s : speed of the particle at  (1/8) revolution later

You might be interested in
List 3 indicators that a chemical reaction has occurred.
mina [271]
Hello! There are many indicators to show a sign that a chemical reaction has occured. These are 3 as followed.

1. An odor is produced.

2. A change in temperature.

3. A color change.

Others can be a formation of a solid or a gas.
8 0
3 years ago
A car accelerates from 13 m/s to 25 m/s in 5.0 s. assume constant acceleration. what was its acceleration?
natima [27]
<span>a = 25-13/6  = 12/6 = 2 m/s^2
Av speed: 25+13/2 = 38/2  = 19 m/sec
Dist = speed * time
19 * 6 = 114 meters</span>
8 0
3 years ago
15. If an 800.-kg sports car slows to 13.0 m/s to check out an accident scene and the
goldfiish [28.3K]

The final combined velocity after the collision is 20.2 m/s

Explanation:

We can solve this problem by using the law of conservation of momentum: in fact, in absence of external forces, the total momentum of the two car and of the truck must be conserved before and after the collision.

This means that we can write the following equation:

p_i = p_f\\m_1 u_1 + m_2 u_2 = (m_1+m_2)v  

where:  

m_1 = 800 kg is the mass of the sport car

u_1 = 13.0 m/s is the initial velocity of the car (taking its direction as positive  direction)

m_2 = 1200 kg is the mass of the truck

u_2 = 25.0 m/s is the initial velocity of the truck

v is the final combined velocity of the car and the truck, after the collision

Re-arranging the equation and substituting the values, we find the velocity after the collision:

v=\frac{m_1 u_1 + m_2 u_2}{m_1+m_2}=\frac{(800)(13)+(1200)(25)}{800+1200}=20.2 m/s

And the positive sign indicates their final direction is the same as the initial direction of the two vehicles.

Learn more about momentum here:

brainly.com/question/7973509  

brainly.com/question/6573742  

brainly.com/question/2370982  

brainly.com/question/9484203  

#LearnwithBrainly

5 0
3 years ago
Name the material used to transfer of charges from one body to other​
Evgesh-ka [11]

Answer:

conductor

Explanation:

A "conductor" is a material that allows the charges to pass freely from one body to the other. This causes a movement among the electrons and this means that<em> the charge will be passed entirely to the object receiving it.</em> This is also called <em>"conductive material."</em>

Examples of conductors are: <em>copper, aluminum, gold, silver, seawater, etc.</em>

The opposite of conductors are called "insulators." These do not allow the free movement of charges from one object to the other.

Examples of insulators: <em>plastic, rubber, paper, glass, wool, dry air, etc.</em>

6 0
3 years ago
The tendency of two masses alone in the universe to drift together is a result of
torisob [31]
It is as a result of gravity.  (D)

This is as stated by Newton's law of universal gravitation. That two objects in the universe attract one another with a force that is proportional to the product of their masses and inversely proportional to the square of the distance apart.

The constant of proportionality is the Universal Gravitational Constant.

G = 6.673 × 10⁻¹¹ Nm²kg⁻²
4 0
3 years ago
Read 2 more answers
Other questions:
  • What do the subscript in the formula for ethane repersent
    9·1 answer
  • A 2-kg bowling ball sits on top of a building that is 40 meters tall.
    13·2 answers
  • Suppose this comet were to hit the earth at 40000 km/h and fuse with it. by how much would it change our planet's velocity? (the
    13·1 answer
  • Help with 4 and 5 above
    7·1 answer
  • An arrow strikes a target moving at 75 m/s and embeds itself 15 cm into the target. If the arrow stopped with constant accelerat
    15·1 answer
  • What are infrasound usages​
    15·2 answers
  • A 1.80-kg monkey wrench is pivoted 0.250 m from its center of mass and allowed to swing as a physical pendulum. The period for s
    14·1 answer
  • HURRY PLEASE!!!
    5·2 answers
  • A swift moving hawk is moving due west with a speed of 30 m/s; 5.0 s later it is moving due north with a speed of 20 m/s.
    11·1 answer
  • a 15-kg block is on a frictionless ramp that is inclined at 20° above the horizontal. it is connected by a very light string ove
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!