False. Radio waves<span> have much longer </span>wavelengths<span> and lower frequencies </span>than<span> </span><span>visible light waves</span>
Answer:
The Earth's magnetic field intensity is roughly between 25,000 - 65,000 nT (.25 -.65 gauss).
Explanation:
<em>To measure the Earth's magnetism in any place, we must measure the direction and intensity of the field. The Earth's magnetic field is described by seven parameters. These are declination (D), inclination (I), horizontal intensity (H), the north (X), and east (Y) components of the horizontal intensity, vertical intensity (Z), and total intensity (F). The parameters describing the direction of the magnetic field are declination (D) and inclination (I). D and I are measured in units of degrees, positive east for D and positive down for me. The intensity of the total field (F) is described by the horizontal component (H), vertical component (Z), and the north (X) and east (Y) components of the horizontal intensity. These components may be measured in units of gauss but are generally reported in nanoTesla (1nT * 100,000 = 1 gauss). </em><em>The Earth's magnetic field intensity is roughly between 25,000 - 65,000 nT (.25 - .65 gauss). </em><em>Magnetic declination is the angle between magnetic north and true north. D is considered positive when the angle measured is east of true north and negative when west. The magnetic inclination is the angle between the horizontal plane and the total field vector, measured positive into Earth. In older literature, the term “magnetic elements” is often referred to as D, I, and H.</em>
Answer:
The total distance is 16.9 m
Explanation:
We understand work in physics as certain force exerted through certain distance. To reach that point below the water, the work done by the diver must be equal to the work done by the water's force of resistance. Therefore, we determine both work expressions and we solve the equation for the diver distance, which is the total distance between the diving board and the stopping point underwater.
