Okay okay sounds okay wn3838
Answer:
17.65 grams of O2 are needed for a complete reaction.
Explanation:
You know the reaction:
4 NH₃ + 5 O₂ --------> 4 NO + 6 H₂O
First you must know the mass that reacts by stoichiometry of the reaction (that is, the relationship between the amount of reagents and products in a chemical reaction). For that you must first know the reacting mass of each compound. You know the values of the atomic mass of each element that form the compounds:
- N: 14 g/mol
- H: 1 g/mol
- O: 16 g/mol
So, the molar mass of the compounds in the reaction is:
- NH₃: 14 g/mol + 3*1 g/mol= 17 g/mol
- O₂: 2*16 g/mol= 32 g/mol
- NO: 14 g/mol + 16 g/mol= 30 g/mol
- H₂O: 2*1 g/mol + 16 g/mol= 18 g/mol
By stoichiometry, they react and occur in moles:
- NH₃: 4 moles
- O₂: 5 moles
- NO: 4 moles
- H₂O: 6 moles
Then in mass, by stoichiomatry they react and occur:
- NH₃: 4 moles*17 g/mol= 68 g
- O₂: 5 moles*32 g/mol= 160 g
- NO: 4 moles*30 g/mol= 120 g
- H₂O: 6 moles*18 g/mol= 108 g
Now to calculate the necessary mass of O₂ for a complete reaction, the rule of three is applied as follows: if by stoichiometry 68 g of NH₃ react with 160 g of O₂, 7.5 g of NH₃ with how many grams of O₂ will it react?

mass of O₂≅17.65 g
<u><em>17.65 grams of O2 are needed for a complete reaction.</em></u>
Both bc your buying the product and a service of them installing it
5.732 grams of AgCl is formed when 0.200 L of 0.200 M AGNO3 reacts with an excess of CaCl2.
Explanation:
The balanced equation:
2 AgNO3(aq) + CaCl2(aq) -----> 2 AgCl(s) + Ca(NO3)2(aq)
data given:
volume of AgNO3 = 0.2 L
molarity of AgNO3 = 0.200 M
atomic weight of AgCl= 143.32 gram/mole
from the formula, number of moles can be calculated
Molarity = 
number of moles of AgNO3 = 0.04
From the reaction:
2 moles of AgNO3 reacts to form 2 moles of AgCl
0.04 moles of AgNO3 reacts to form x mole of AgCl
= 
= 0.04 moles of AgCl is formed
mass of AgCl formed is calculated by multiplying number of moles with atomic mass of AgCl
mass of AgCl = 0.04 x 143.32
= 5.732 grams of AgCl is formed.
Answer:
2.5 atm
Explanation:
V1 = 28L
T1 = 45°C = (45 + 273.15)K = 318.15K
V2 = 34L
T2 = 35°C = (35 + 273.15)K = 308.15k
P2 = 2.0atm
P1 = ?
From general gas equation,
(P1 × V1) / T1 = (P2 × V2) / T2
P2 × V2 × T1 = P1 × V1 × T2
P1 = (P2 × V2 × T1) / (V1 × T2)
P1 = (2.0 × 34 × 318.15) / (28 × 308.15)
P1 = 21634.5 / 8628.2
P1 = 2.5 atm
The initial pressure of the gas is 2.5atm