Answer:
b. The molarity of the solution increases
Explanation:
The correct answer is option b, that is the molarity of the solution increases.
Because the molarity is the concentration of the solution and it is explained as the amount of solute in amount of solution.
Solution: is the solute dissolved in solvent.
So if we increases the amount of solute in solvent the concentration in terms of molarity of solution increases and if we increase amount of solvent or water then the concentration or molarity increases.
Suppose we have form a sugar solution of 1 L by adding 4 mole of sugar then what happen
Use the Molarity formula
Molarity = no. of moles / 1 L of solution
put values in the formula
Molarity = 4/ 1 L of solution = 4 M
So the molarity of solution is 4 now if we add 2 mole more sugar to the same amount of sugar and amount of solution remain the same
now the no. of moles of sugar = 6 mole
So,
Use the Molarity formula
Molarity = no. of moles / 1 L of solution
put values in the formula
Molarity = 6 mol / 1 L of solution = 6 M
So the correct option is b.
Answer:
The answer to your question is Pressure = 5 atm
Explanation:
Data
Volume 1 = V1 = 0.5 l
Pressure 1 = P1 = 1 atm
Volume 2 = V2 = 0.1 l
Pressure 2 = P2 = x
Formula
To solve this problem use the Boyle's equation
V1P1 = V2P2
Solve for P2
P2 = V1P1/V2
Substitution
P2 = (0.5 x 1) / 0.1
Simplification
P2 = 0.5/0.1
Result
P2 = 5 atm
Answer:

Explanation:
Lisoprisil's molecular mass is 405.488g/mol, we'll use this fact to calculate molarity, which units are mol/L, and we proceed to the calculus:
- First, we'll unify unities, the 10 milligrams of lisinopril we'll transform into grams.

- Now that we have the same unities we'll calculate molarity using the molecular mass, the grams of lisinopril and the liters in which these grams are, let's consider that our final unities have to be mol/L.

I hope you find this information useful and interesting! Good luck!
The number of mole of lithium, Li needed for the reaction is 3.2 moles (Option D)
<h3>Balanced equation </h3>
4Li + N₂(g) → 2Li₂N
From the balanced equation above,
2 moles of Li₂N were obtained from 4 moles of Li
<h3>How to determine the mole of lithium needed </h3>
From the balanced equation above,
2 moles of Li₂N were obtained from 4 moles of Li
Therefore,
1.6 moles of Li₂N will be obtained from = (1.6 × 4) / 2 = 3.2 moles of Li
Thus, 3.2 moles of Li are needed for the reaction
Learn more about stoichiometry:
brainly.com/question/14735801
Answer: hope this helps
To make molar NaCl solutions of other concentrations dilute the mass of salt to 1000ml of solution as follows:
0.1M NaCl solution requires 0.1 x 58.44 g of NaCl = 5.844g.
0.5M NaCl solution requires 0.5 x 58.44 g of NaCl = 29.22g.
2M NaCl solution requires 2.0 x 58.44 g of NaCl = 116.88g.
Explanation: