There is a multiple zero at 0 (which means that it touches there), and there are single zeros at -2 and 2 (which means that they cross). There is also 2 imaginary zeros at i and -i.
You can find this by factoring. Start by pulling out the greatest common factor, which in this case is -x^2.
-x^6 + 3x^4 + 4x^2
-x^2(x^4 - 3x^2 - 4)
Now we can factor the inside of the parenthesis. You do this by finding factors of the last number that add up to the middle number.
-x^2(x^4 - 3x^2 - 4)
-x^2(x^2 - 4)(x^2 + 1)
Now we can use the factors of two perfect squares rule to factor the middle parenthesis.
-x^2(x^2 - 4)(x^2 + 1)
-x^2(x - 2)(x + 2)(x^2 + 1)
We would also want to split the term in the front.
-x^2(x - 2)(x + 2)(x^2 + 1)
(x)(-x)(x - 2)(x + 2)(x^2 + 1)
Now we would set each portion equal to 0 and solve.
First root
x = 0 ---> no work needed
Second root
-x = 0 ---> divide by -1
x = 0
Third root
x - 2 = 0
x = 2
Forth root
x + 2 = 0
x = -2
Fifth and Sixth roots
x^2 + 1 = 0
x^2 = -1
x = +/- 
x = +/- i
Answer:
how to do this
Step-by-step explanation:
Answer:
∠a = 10°
Step-by-step explanation:
The measure of ∠a = x
The measure of ∠b = 4x-30
It is also mentioned that the measure a and measure b are vertical angles. We need to find the value of a.
For vertically opposite angles,
∠a = ∠b
x = 4x-30
or
4x-30=x
Taking like terms together,
4x-x= 30
3x = 30
x = 10
So, the meausre of ∠a is equal to 10°.
Answer:
16 square inches
Step-by-step explanation:
4 x 4 = 16