Answer:
yea only ofc
Step-by-step explanation:
Answer:
See below.
Step-by-step explanation:
Here's an example to illustrate the method:
f(x) = 3x^2 - 6x + 10
First divide the first 2 terms by the coefficient of x^2 , which is 3:
= 3(x^2 - 2x) + 10
Now divide the -2 ( in -2x) by 2 and write the x^2 - 2x in the form
(x - b/2)^2 - b/2)^2 (where b = 2) , which will be equal to x^2 - 2x in a different form.
= 3[ (x - 1)^2 - 1^2 ] + 10 (Note: we have to subtract the 1^2 because (x - 1)^2 = x^2 - 2x + 1^2 and we have to make it equal to x^2 - 2x)
= 3 [(x - 1)^2 -1 ] + 10
= 3(x - 1)^2 - 3 + 10
= <u>3(x - 1)^2 + 7 </u><------- Vertex form.
In general form the vertex form of:
ax^2 + bx + c = a [(x - b/2a)^2 - (b/2a)^2] + c .
This is not easy to commit to memory so I suggest the best way to do these conversions is to remember the general method.
200+ 10 + 6= 216
...........................................
Do sin(90)*13/15 which gives you 0.87 then do inverse of sin-1(0.87) which angle A = 60.45 degrees
In this item, we let x be the number of pairs of socks and y be the number of blouses that were purchased by Hanna. The total amount that is spent for the socks and blouses are 2.99x and 12.99y, respectively. The equation that would best describe the given scenario is,
2.99x + 12.99y = 43.92