The law is approximately valid for real gases at sufficiently low pressures and high temperatures. The specific number of molecules in one gram-mole of a substance, defined as the molecular weight in grams, is 6.02214076 × 1023, a quantity called Avogadro's number, or the Avogadro constant.
Answer:
In a chemical reaction, chemical equilibrium is the state in which the forward reaction rate and the reverse reaction rate are equal. The result of this equilibrium is that the concentrations of the reactants and the products do not change.
Explanation:
Answer:
See Explanation Below
Explanation:
A) The rate law can only be on the reactant side and you can only determine it after you get the net ionic equation because of spectators cancelling out. So in this case the rate law is k=[CH3Br]^1 [OH-]^1. The powers are there because the rxn is first order.
B) Since the rxn is first order anything you do to it will be the exact same "counter rxn" per say so since you are decreasing the OH- by 5 the rate will decease by 5
C) The rate will increase by 4 since you are doubling both you have to multiply them both.
Answer:
2co+o2=2co2
Explanation:
co+o2=co2
here is one carbon monoxide and two oxygen react with it and forms carbon dioxide..
2co+o2=2co2
hey mate hope it's help you.. please mark it as a brain.... answer
Answer:
V = 80.65L
Explanation:
Volume = ?
Number of moles n = 5 mol
Temperature (T) = 393.15K
Pressure = 1520mmHg
Ideal gas constant (R) = 62.363mmHg.L/mol.K
According to ideal gas law,
PV = nRT
P = pressure of the ideal gas
V = volume the gas occupies
n = number of moles of the gas
R = ideal gas constant (note this can varies depending on the unit of your variables)
T = temperature of the ideal gas
PV = nRT
Solve for V,
V = nRT / P
V = (5 * 62.363 * 393.15) / 1520
V = 80.65L
The volume the gas occupies is 80.65L