Answer:
- <u>Decreasing the temperature of the system will shift the reaction rightward.</u>
Explanation:
The complete question is:
Given the equation representing a system at equilibrium:
- N₂(g) + 3H₂(g) ⇌ 2NH₃(g) + energy
what changes occur when the temperature of this system is decreased?
<h2>Solution</h2>
Modifying the temperature of a system in equilibrium changes the equilibrium constant and the equilibrium position (concentrations) of the system.
When the temperature is decreased, following LeChatelier's principle that the system will react in a way that seeks to counteract the disturbance, the reaction will shift toward the reaction that produces more heat energy to compensate the temperature decrease.
Thus, decreasing the temperature of the system will favor the forward reaction, more N₂(g) and H₂(g) will be consumed and more NH₃(g) and energy will be produced. Hence, the equilibrium will shift rightward.
Three things that should happen for a chemical reaction to occure :
1. Position of electrons must change
2. Chemical bonds must be formed and broken between atoms and
3. No changes should happen to the nuclei
What are the options the your question
Answer: 225 joules.
Explanation:
If this a one dimension problem, this is the motion is in the same direction of the force, the equation for work is:
Work = distance × force
⇒ Work = 15 m × 15 N = 225 joules.
This is a special case of the general equation
Work = |F| |displacement| cosine (angle between the force and displacement)
When force and displacement are in the same direction, the angle is 0, so cos(0) = 1. This is the two vectors are parellel and the work is just the product of the two magnitudes (force and distance)