Answer:
57.2 g
Explanation:
First we <u>convert 66.4 grams of Ba(ClO₄)₂·3H₂O into moles</u>, using its <em>molar mass</em>:
- Molar mass of Ba(ClO₄)₂·3H₂O = Molar mass of Ba(ClO₄)₂ + (Molar Mass of H₂O)*3
- Molar mass of Ba(ClO₄)₂·3H₂O = 390.23 g/mol
- 66.4 g ÷ 390.23 g/mol = 0.170 mol Ba(ClO₄)₂·3H₂O
0.170 moles of Ba(ClO₄)₂·3H₂O would produce 0.170 moles of 0.170 moles of Ba(ClO₄)₂. Meaning we now <u>convert 0.170 moles of Ba(ClO₄)₂ into grams,</u> using the molar mass of Ba(ClO₄)₂:
- 0.170 mol * 336.23 g/mol = 57.2 g
The element that is commonly found in meteorites is oxygen
Answer: This contains magnesium, Mg2+, and hydroxide, OH–
, ions. Each magnesium ion is +2 and
each hydroxide ion is -1: two -1 ions are needed for one +2 ion, and the formula for magnesium
hydroxide is Mg(OH)2. The (OH)2 indicates there are two OH–
ions. In a formula unit of
Mg(OH)2, there are one magnesium ion and two hydroxide ions; or one magnesium, two
oxygen, and two hydrogen atoms. The subscript multiplies everything in ( )
hope that helped!!
Chemical reactions that release energy will not occur without a source of energy. So the answer is release.