N(N ∩ S ∩ K) = 10
n(ξ) = 250
n(S ∪ K) = 15 - 10 = 5
n(N ∪ S) = 20 - 10 = 10
n(N ∪ K) = 30 - 10 = 20
n(S) = 50 - 10 - 5 - 10 = 25
n(K) = 55 - 20 - 5 - 10 = 20
n(N) = 100 - 10 - 20 - 10 = 60
n(N ∪ S ∪ K) = 10 + 5 + 10 + 20 + 25 + 20 + 60 = 150
Therefore, n(N ∪ S ∪ K)' = 250 - 150 = 100
Therefore, 100 million people do not read any of the three papers.
<h3>
♫ - - - - - - - - - - - - - - - ~<u>
Hello There</u>
!~ - - - - - - - - - - - - - - - ♫</h3>
➷ final = original x multiplier^n
n is the number of years
Substitute the values in:
final = 3800 x 1.054^3
final = 4449.440763
The closest answer is A
<h3><u>
✽</u></h3>
➶ Hope This Helps You!
➶ Good Luck (:
➶ Have A Great Day ^-^
↬ ʜᴀɴɴᴀʜ ♡
First solve the quadratic as you would an equation, so you will get two real zeroes p and q so that (x-p)(x-q)=0 is another way of expressing the quadratic. All quadratics can be represented graphically by a parabola, which could be inverted. When the x² coefficient is negative it’s inverted. If the coefficient of x² isn’t 1 or -1 divide the whole quadratic by the coefficient so that it takes the form x²+ax+b, where a and b are real fractions. The curve between the zeroes will be totally below the x axis for an upright parabola, and totally above for an inverted parabola. This fact is used for inequalities. An inequality will be <, ≤, > or ≥. This makes it easy to solve the inequality. If the position of the curve between the zeroes is below the axis then outside this interval it will be above, and vice versa. So we’ve defined three zones. x
q, and p
I find it easier if you draw out people(not perfectly just make a circle or something) and then circle every 2 people to count for the men. There are 16 men in the gym.
Answer:20%
Step-by-step explanation:
250*20%=50
50+250=300