1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marishachu [46]
4 years ago
13

Write in expanded form of 7805192

Mathematics
2 answers:
erik [133]4 years ago
7 0

Answer:

In word form its gonna be

Seven million eight hundred five thousand one hundred ninety-two

Art [367]4 years ago
4 0

Answer:

expanded form =

7000000+800000+00000+5000+100+90+2

Step-by-step explanation:

<em><u>hope it helps you </u></em>

You might be interested in
Sanya has a piece of land which is in the shape of a rhombus. She wants her one daughter and one son to work on the land and pro
Neporo4naja [7]

{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}

★ Sanya has a piece of land which is in the shape of a rhombus.

★ She wants her one daughter and one son to work on the land and produce different crops, for which she divides the land in two equal parts.

★ Perimeter of land = 400 m.

★ One of the diagonal = 160 m.

{\large{\textsf{\textbf{\underline{\underline{To \: Find :}}}}}}

★ Area each of them [son and daughter] will get.

{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}

Let, ABCD be the rhombus shaped field and each side of the field be x

[ All sides of the rhombus are equal, therefore we will let the each side of the field be x ]

Now,

• Perimeter = 400m

\longrightarrow  \tt AB+BC+CD+AD=400m

\longrightarrow  \tt x + x + x + x=400

\longrightarrow  \tt 4x=400

\longrightarrow  \tt  \: x =  \dfrac{400}{4}

\longrightarrow  \tt x= \red{100m}

\therefore Each side of the field = <u>100m</u><u>.</u>

Now, we have to find the area each [son and daughter] will get.

So, For \triangle ABD,

Here,

• a = 100 [AB]

• b = 100 [AD]

• c = 160 [BD]

\therefore \tt Simi \:  perimeter \:  [S] =  \boxed{ \sf \dfrac{a + b + c}{2} }

\longrightarrow \tt S = \dfrac{100 + 100 + 160}{2}

\longrightarrow \tt S =  \cancel{ \dfrac{360}{2}}

\longrightarrow \tt S = 180m

Using <u>herons formula</u><u>,</u>

\star \tt Area  \: of  \: \triangle = \boxed{\bf{{ \sqrt{s(s - a)(s - b)(s - c) } }}} \star

where

• s is the simi perimeter = 180m

• a, b and c are sides of the triangle which are 100m, 100m and 160m respectively.

<u>Putt</u><u>ing</u><u> the</u><u> values</u><u>,</u>

\longrightarrow \tt  Area_{ ( \triangle \:  ABD)} =  \tt \sqrt{180(180 - 100)(180 - 100)(180 - 160) }

\longrightarrow \tt  Area_{ ( \triangle \:  ABD)} =  \tt \sqrt{180(80)(80)(20) }

\longrightarrow \tt  Area_{ ( \triangle \:  ABD)} =  \tt \sqrt{180 \times 80 \times 80 \times 20 }

\longrightarrow \tt  Area_{ ( \triangle \:  ABD)} =  \tt \sqrt{9 \times 20 \times 20 \times 80 \times 80}

\longrightarrow \tt  Area_{ ( \triangle \:  ABD)} =  \tt \sqrt{ {3}^{2} \times  {20}^{2}  \times  {80}^{2}  }

\longrightarrow \tt  Area_{ ( \triangle \:  ABD)} =  3 \times 20 \times 80

\longrightarrow \tt  Area_{ ( \triangle \:  ABD)} = \red{   4800  \: {m}^{2} }

Thus, area of \triangle ABD = <u>4800 m²</u>

As both the triangles have same sides

So,

Area of \triangle BCD = 4800 m²

<u>Therefore, area each of them [son and daughter] will get = 4800 m²</u>

{\large{\textsf{\textbf{\underline{\underline{Note :}}}}}}

★ Figure in attachment.

{\underline{\rule{290pt}{2pt}}}

7 0
2 years ago
Read 2 more answers
Which statement is true about 143? A. It is a prime number. B. It is a composite number. C. It is a whole number that is neither
Stels [109]

Answer:

B. It is a composite number.

Step-by-step explanation:

143 can be divided by 11 and 13 making it a composite number.

5 0
3 years ago
Read 2 more answers
If the triangle on the grid below is translated by using the rule (x, y) right-arrow (x + 5, y minus 2), what will be the coordi
wlad13 [49]

9514 1404 393

Answer:

  B. (0, –2)

Step-by-step explanation:

Put the (x, y) values into the given formula.

  (x, y) ⇒ (x +5, y -2)

  B(-5, 0) ⇒ B'(-5+5, 0-2) = B'(0, -2)

3 0
3 years ago
Place the indicated product in the proper location on the grid.
marishachu [46]

Answer:

See explanation

Step-by-step explanation:

1.

(a+b)(a^2-ab+b^2)=a^3-a^2b+ab^2+a^2b-ab^2+b^3=a^3+b^3

2.

(1-7x)(1+9x)=1+9x-7x-63x^2=-63x^2+2x+1

3.

(x+y+3)(x+y-4)=x^2+xy-4x+xy+y^2-4y+3x+3y-12=x^2+2xy+y^2-x-y-12

4.

(a-b)(a^2+ab+b^2)=a^3+a^2b+ab^2-a^2b-ab^2-b^3=a^3-b^3

5.

(m^3n+8)(m^3n-5)=(m^3n)^2-5m^3n+8m^3n-40=m^6n^2+3m^3n-40

6.

(4-(3c-1))(6-(3c-1))=(4-3c+1)(6-3c+1)=(5-3c)(7-3c)=35-15c-21c+9c^2=9c^2-36c+35

7.

(ab-9)(ab+8)=(ab)^2+8ab-9ab-72=a^2b^2-ab-72

8.

(a+b-c)(a+b+c)=a^2+ab+ac+ab+b^2+bc-ac-bc-c^2=a^2+b^2-c^2+2ab

9.

(a+3)(a-2)=a^2-2a+3a-6=a^2+a-6

10.

(3m^3-y)(3m^3-y)=(3m^3)^2-3m^3y-3m^3y+y^2=9m^6-6m^3y+y^2

11.

(2x-3y)(4x-y)=8x^2-2xy-12xy+3y^2=8x^2-14xy+3y^2

12.

(x^2+2x-1)(x^2+2x+5)=x^4+2x^3+5x^2+2x^3+4x^2+10x-x^2-2x-5=x^4+4x^3+8x^2+8x-5

13.

(4x-3y+5)(x+2y-3)=4x^2+8xy-12x-3xy-6y^2+9y+5x+10y-15=4x^2+5xy-6y^2-7x+19y-15

8 0
4 years ago
Factorise<br>1) 9a^2 - 6a​
Dafna1 [17]

Answer:

9a^2 - 6a

taking common

3a(3a-2)

6 0
3 years ago
Other questions:
  • 6√18 + 3√50 simply ?
    12·2 answers
  • Choose the statement below that correctly compares the numbers 2.34 and 2.43.
    8·1 answer
  • How to write three different improper fractions that equal4/23
    12·1 answer
  • The hypotenuse of a right triangle is 34 inches. One leg of the triangle is 14 inches less than the other leg. In simplified for
    13·2 answers
  • Is the square root of 48 a rational number?
    9·1 answer
  • What is the missing length.
    7·1 answer
  • Can someone please helpppplpppppppppppp
    6·1 answer
  • Factor 1/8 out of 1/8x-49/8​
    8·1 answer
  • 60 points! No links or cheaters! I need a serious answer! Someone please help me I need to bump up my grade!
    14·1 answer
  • Can someone help me?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!