Explanation:
According to Newton's second law of motion, the rate of change of momentum is directly proportional to the applied unbalanced force. The mathematical expression is given by:

Where
F is the applied force
m is the mass of the object
v is the velocity with which it is moving

Momentum of a particle is given by the product of mass and velocity as :

Hence, this is the required solution.
Answer:
"The wavelengths are the same for both. The width of slit 1 is larger than the width of slit 2."
Explanation:
The full question has not been provided, so I just copied this into the web and found this answer and explanation on quizlet:
"The wavelengths are the same for both. The width of slit 1 is larger than the width of slit 2.
D sin θ = m λ
if the wavelengths are the same, then if the angle is smaller, the slit width must be larger. The top photo shows a pattern that is more closely spaced. That means the angle is smaller. The slit width must be larger."
This answer/explanation should be correct, as we are looking at bright fringes and the formula being used corresponds to the parameters of the question.
Hope this helps!
Answer:
24 Coulumbs
Explanation:
Given data
time= 1 minute= 6 seconds
P=2 W
R= 12 ohm
We know that
P= I^2R
P/R= I^2
2/12= I^2
I^2= 0.166
I= √0.166
I= 0.4 amps
We know also that
Q= It
substitute
Q= 0.4*60
Q= 24 Columbs
Hence the charge is 24 Coulumbs
Answer:
a=0 v = v₀ + a t
a=0 line is horizontal
Explanation:
1, In a graph of acceleration vs. time, we have lines, when the line is horizontal it is zero, when the line has a positive slope the increasing accelerations and when the slope is negative the decreasing acceleration
2, speed and relationship of a car is given by
v = v₀ + a t
where vo is the initial velocity, a is the acceleration and tel time
in this case I will calcograph velocity vs. time the constant acceleration is a straight line.
In general from the graph we can find the initial velocity with the cut at that x and the acceleration of the car with the slope
Answer:
frequency of the sound = f = 1,030.3 Hz
phase difference = Φ = 229.09°
Explanation:
Step 1: Given data:
Xini = 0.540m
Xfin = 0.870m
v = 340m/s
Step 2: frequency of the sound (f)
f = v / λ
λ = Xfin - Xini = 0.870 - 0.540 = 0.33
f = 340 / 0.33
f = 1,030.3 Hz
Step 3: phase difference
phase difference = Φ
Φ = (2π/λ)*(Xini - λ) = (2π/0.33)* (0.540-0.33) = 19.04*0.21 = 3.9984
Φ = 3.9984 rad * (360°/2π rad)
Φ = 229.09°
Hope this helps!