1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
boyakko [2]
3 years ago
12

Help meeeeeeeeeeeeeeeeeeeeeeeee

Physics
1 answer:
svetlana [45]3 years ago
8 0

Answer:

Just like a chemical reaction.

You might be interested in
A planet orbits a star along an elliptical path from point X to point Y, as shown in the figure. In which of the following syste
8090 [49]

Answer:

The correct answer is Option D, the closed system containing the planet and the star.

Explanation:

To start, we need to define mechanical energy: the energy an object has from its motion and position.

The fundamental principle in physics is that the total energy in a closed system stays constant, even if it transforms. By saying "closed system," we refer to a system isolated from its surroundings. Energy never leaves the system; it only moves from one part to another.

This statement only applies to closed systems, however. An open system that interacts with its environment works differently. Energy may enter and leave the system through interaction with external forces, and this includes mechanical energy. For this reason, Option A and Option B are incorrect.

The remaining two options, C and D, only vary with the objects in the closed system. Option D includes the star; Option C does not.

However, we should take a closer look at Option C. Can an object have potential energy with itself? No, it cannot. It only has potential energy with other bodies. If the system is defined as the planet only, the only type of energy present is kinetic energy. We know a planet orbiting a star has more kinetic energy near and more gravitational potential energy further from its star. Thus it has less kinetic energy further from its star and less mechanical energy. Because of this, Option C is incorrect.

The only answer left is Option D. If we define the planet and star as a closed system, we find no net external force acting on it. Consequently, it obeys the law of conservation of energy. From prior reasoning, we know mechanical energy includes potential energy and kinetic energy and that the amounts of these energies vary with its orbit. As a result, mechanical energy is always conserved and always the same. In the end, the correct answer is Option D.

4 0
3 years ago
Estimate the kinetic energy of the earth with respect to the sun as the sum of two terms.
nekit [7.7K]

The definition of kinetic energy allows to find the result for the relationship between the energy of the sun and the Earth is:

  • The kinetic energy ratio is   \frac{K_{Sum} }{K_{Earth}} = 5.3 \ 10^2
<h3 /><h3 /><h3> Kinetic enrgy.</h3>

Kinetic energy is the energy due to the movement of bodies, it is given by the relation

          K = ½ m v²

where K is the kinetic energy, m the mass of the body and v the velocity of the body.

In a compound motion it is common to separate energy into parts to simplify calculations.

  • Translational kinetic energy. Due to the linear movement of the body

            K_{tras} =\frac{1}{2} m v^2

  • Rotational kinetic energy. Due to the rotational movement of the body.

            K_{rot} = \frac{1}{2} I w^2

Where I is the inrtia momentum and w the angular velocity.

They indicate that we compare the kinetic energy of the sun and the Earth.

The Earth has two movements, one of rotation about its axis with a period of T = 24 h and one of translation with respect to the Sun with a period of T= 365 days, therefore the kinetic energy of the Earth.

           K_{earth} = K_{tras} + K_{rot}

Linear and rotational speed are related.

           v = w r

The Earth is an almost spherical body therefore the moment of inertia of a solid sphere.

           I = \frac{2}{5 }  m r^2  

Let's  subatitute.

         

          K_{earth} = \frac{1}{2} \  m r^2_{tras} w^2_{tras} + \frac{1}{2} ( \frac{2}{5} m r^2_{earth}) w^2_{rot}  

The movement of the Earth around the sun is almost circular, therefore we can use the relations of the uniform circular movement, where the angle for one revolution is 2π radians and the time is called the period.

       w = \frac{2 \pi}{T}  

Let's substitute.

        K_{earth} = \frac{1}{2} m ( \frac{2\pi r^2_{tras}}{T_{tras}})^2  \ + \frac{1}{5} m (\frac{2\pi r^2_{earth} }{T^2_{rot}})^2  

        K_{earth} = 4 \pi^2 \ m \ ( \frac{1}{2} [ \frac{r_{tras}}{T_{tras}y} ]^2 + \frac{1}{5} [ \frac{r_{rot}}{T_{rot}}]^2)  

Data for Earth are tabulated:

  • Mass m = 5.98 1024 kg
  • Radius r = 6.37 10⁶ m
  • Radius orbits tras = 1.496 10¹¹ m
  • Rotation period T_{rot} = 24 h (\frac{3600s}{1h}) = 8.64 10⁴s
  • Translation period  T_{tras} = 365 d (\frac{24h}{1 d}) (\frac{3600s}{1h}) = 3.15 10⁷ s

Let's calculate.

        K_{earth} = 4 \pi^2 5.98 \ 10^{24}  ( \frac{1}{2} ( \frac{1.496 \ 10^{11}}{3.15 \ 10^7 } )^2  \ +  \frac{1}{5}( \frac{6.37 \ 10^6 }{8.64 \ 10^4})^2 )

        K_{earth} = 2.36 \ 10^{26 } \ (1.128 \ 10^7 + 1.087 \ 10^3)

        K_{earth}= 2.66 \ 10^{33} J

Let's analyze the kinetic energy for the Sun, this is inside the solar system therefore it has no translation movement and is approximately a sphere with a rotation period of T_{Sum} = 27 days.

The kinetic energy of the sun is;

          K_{sum} = K_{rot} =  \frac{1}{2} I w^2  

          K_{sum} = \frac{1}{2} (\frac{2}{5} M R^2) (\frac{2\pi}{T_{sum}})^2  

          K_{sum} = \frac{4\pi^2 }{5} M (\frac{R}{T_{rot}})^2  

The tabulated data for the sun are:

  • Mass m = 1,991 1030 kg.
  • Radius R = 6.96 10⁸ m
  • Period T = 27 d (\frac{24h}{1 d} ) (\frac{3600s}{1h}) = 2.33 10⁶ s

         

Let's calculate.

           

          K_{sum} = 1.40 \ 10^{36} J

The relationship of the kinetic energy of the sun and the Earth is:

        \frac{K_{sum}}{K_{earth}} = \frac{1.40 \ 10^{36}}{2.66 \ 10^{33}}  

       \frac{K_{sum}}{K_{earth}} =  5.3 \ 10^2  

In conclusion using the definition of kinetic energy we can shorten the result for the relationship between the energy of the sun and the Earth is:

  • The kinetic energy ratio is:  \frac{K_{Sum}}{K_{Earth}} = 5 \ 10^2

Learn more about kinetic energy here: brainly.com/question/25959744

5 0
3 years ago
What do you know about water
Romashka-Z-Leto [24]

Answer:

  1. It is vital for all known forms of life.
  2. It provides no calories nor organic nutrients.
  3. It forms precipitation in the form of rain and aerosols in the form of fog.
  4. It's chemical symbol is H₂O

Explanation:

HOPE THAT HELPS

PLEASE MARK AS BRAINLIEST

7 0
3 years ago
Which action best demonstrates the transformation of mechanical energy to heat energy and light energy?
Vinvika [58]

Well, first off, mechanical energy is the sum of kinetic and potential energy in an object that is used to do work. In other words, it is energy in an object due to its motion or position, or both. Heat energy is the result of the movement of tiny particles called atoms, molecules or ions in solids, liquids and gases. Light energy is the only form of energy that we can actually see directly. It is formed through chemical, radiation, and mechanical means. Striking a match stick (mechanical energy) creates fire, which has a ton of heat energy, and produces light too, so the answer, is A. I hope i could help!

5 0
3 years ago
What are the prediction made by the second and third apparitions?
julsineya [31]
This is too late too answer?

3 0
3 years ago
Other questions:
  • A woman begins driving her car 25 km north of calgary. Some time later, the woman and her car are 100 km north of calgary.
    14·1 answer
  • Tim is given a new quantity called Electrical Current. Which of the following questions could Tim ask to determine whether the q
    12·1 answer
  • On a velocity time graph, what happens when the line crosses the x axis?
    7·1 answer
  • Look at this picture of a whale shark. Which question about the whale shark is nonscientific?
    7·2 answers
  • A solid wood door 1.00 m wide and 2.00 m high is hinged along one side and has a total mass of 40.0 kg. Initially open and at re
    14·1 answer
  • What is the unit of destiny what are the basic unit involve in it​
    11·1 answer
  • On her trips from home to school, karla drives along the streets after exiting the driveway. She drives 1.85 miles south, 2.43 m
    10·1 answer
  • A ball is thrown horizontally from the top of a building at 2 m/s. It takes 3 seconds to reach the ground. How far did the ball
    9·1 answer
  • How does weathering, erosion and deposition shape the Earth and contribute to the rock cycle? Weathering, erosion and deposition
    15·1 answer
  • An antelope moving with constant acceleration of 2m/s2 covers crosses a point where its velocity is 5m/s. After 6s how much dist
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!