If the object is moving in a straight line with constant speed,
that's a description of " acceleration = zero ".
Zero acceleration means zero net force on the object.
NO net force is 'required' to keep an object moving in a straight line
at constant speed. In fact, if there IS any net force on the object,
then either its speed or its direction MUST change ... there's no way
to avoid it.
None of this depends on the object's mass, or on the speed or direction
of its motion.
The speed of sound is greater in ice (4000 m/s), then in water (1500 m/s), then in air (340 m/s). The explanation for this is the differente state of the matter in the three cases.
In fact, sound waves travel faster in solids (like ice), then in liquids (like water), then in gases (like air). This is because the speed of the sound wave depends on the density of the medium: the greater the density, the faster the sound wave. This can be easily understood by thinking at how a sound wave propagates: a sound wave is a vibration of molecules, which is transmitted throughout the medium by collision of the molecules. Therefore, the smaller the spacing between the molecules (such as in solids), the more efficient is the propagation, and so the sound wave is faster. On the contrary, there is a large spacing between molecules in gases (such as in the air), so there are less collisions between the molecules and so the wave is not transmitted efficiently, and so it has less velocity.
Answer:
I just noticd i dont speak this launguage
Explanation:
Please answer this question
Can you explain this a bit more I don’t quite understand