The complex, highly technical formula for capacitors is
<em>Q = C V</em>
Charge = (capacitance) (voltage)
Charge = (3 F) (24 V)
<em>Charge = 72 Coulombs</em>
The positive plate of the capacitor is missing 72 coulombs worth of electrons. They were sucked into positive terminal of the battery stack.
The negative plate of the capacitor has 72 coulombs worth of extra electrons. They came from the negative terminal of the battery stack.
You should be aware that this is a humongous amount of charge ! An average <u><em>lightning bolt</em></u>, where electrons flow between a cloud and the ground for a short time, is estimated to transfer around <u><em>15 coulombs</em></u> of charge !
The scenario in the question involves a "supercapacitor". 3 F is is no ordinary component ... One distributor I checked lists one of these that's able to stand 24 volts on it, but that product costs $35 apiece, you have to order at least 100 of them at a time, and they take 2 weeks to get.
Also, IF you can charge this animal to 24 volts, it will hold 864J of energy. You'd probably have a hard time accomplishing this task with a bag of leftover AA batteries.
Answer:
The brightness of bulb 1 dies because it is switched off.
Answer:

Explanation:
magnetic flux is the count of magnetic field lines passing through a given loop or area
As we know that magnetic flux is given by the formula

here we also know that magnetic field B and plane of the coil is perpendicular in initial position
So the area vector is always perpendicular to the plane of the coil
so the angle between magnetic field and area vector is parallel to each other and this angle would be zero
so magnetic flux of the coil initially we have

Answer:
ΔS total ≥ 0 (ΔS total = 0 if the process is carried out reversibly in the surroundings)
Explanation:
Assuming that the entropy change in the aluminium bar is due to heat exchange with the surroundings ( the lake) , then the entropy change of the aluminium bar is, according to the second law of thermodynamics, :
ΔS al ≥ ∫dQ/T
if the heat transfer is carried out reversibly
ΔS al =∫dQ/T
in the surroundings
ΔS surr ≥ -∫dQ/T = -ΔS al → ΔS surr ≥ -ΔS al = - (-1238 J/K) = 1238 J/K
the total entropy change will be
ΔS total = ΔS al + ΔS surr
ΔS total ≥ ΔS al + (-ΔS al) =
ΔS total ≥ 0
the total entropy change will be ΔS total = 0 if the process is carried out reversibly in the surroundings