Answer:3 moles of Oxygen atoms weigh 48.00 grams.
Explanation:
CH3CH2CH2CH3 < CH3CH2CHO < CH3CHOHCH3
Explanation:
Boiling point trend of Butane, Propan-1-ol and Propanal.
Butane is a member of the CnH2n+2 homologous series is an alkane. Alkanes have C-H and C-C bonds which have Van der waals dispersion forces which are temporary dipole-dipole forces (forces caused by the electron movement in a corner of the atom). This bond is weak but increases as the carbon chain/molecule increases.
In Propan-1-ol(Primaryalcohol), there is a hydrogen bond present in the -OH group. Hydrogen bond is caused by the attraction of hydrogen to a highly electronegative element like Cl-, O- etc. This bond is stronger than dispersion forces because of the relative energy required to break the hydrogen bond. Alcohols (CnH2n+1OH) also experience van der waals dispersion forces on its C-C chain and C-H so as the Carbon chain increases the boiling point increases in the homologous series.
Propanal which is an Aldehyde (Alkanal) with the general formula CnH2n+1CHO. This molecule has a C-O, C-C and C-H bonds only. If you notice, the Oxygen is not bonded to the Hydrogen so there is no hydrogen bond but the C-O bond has a permanent dipole-dipole force caused by the electronegativity of oxygen which is bonded to carbon. It also has van der waals dispersion forces caused by the C-C and C-H as the carbon chain increases down the homologous series. The permanent dipole-dipole forces are not as easy to break as van der waals forces.
In conclusion, the hydrogen bonds present in alcohols are stronger than the permanent dipole-dipole bonds in the aldehyde and the van der waals forces in alkanes (irrespective of the carbon chain in Butane). So Butane < Propanal < Propan-1-ol
The limiting reactant in the reaction is the NO molecule.
<h3>What is limiting reactant?</h3>
The limiting reactant is the reactant that is present in the least amount in the reaction. The rate of reaction depends on the limiting reactant.
Given the reaction; 4NH3 + 6NO --> 5N2 + 6H2O.
Number of moles of NH3 = 43.4 g/17 g/mol = 2.55 moles
Number of moles of NO = 30 g/30 g/mol = 1 mole
Now if 4 moles of NH3 reacts with 6 moles of NO
2.55 moles of NH3 reacts with 2.55 moles * 6 moles/ 4 moles
= 3.8 moles
Hence, the limiting reactant in this reaction is NO.
Learn more about limiting reactant:brainly.com/question/14225536
#SPJ1
HNO3 is a strong acid and NaOH is a
strong base. An equal number of moles of
each will create a neutral solution.
(.1500L)(.100M NaOH) = .01500 moles
NaOH, and therefore .015 moles OH-
.01500 moles H+ = .01500 moles HNO3 =
(.120M HNO3)(volume HNO3)
volume HNO3 = .125L HNO3, or 125mL
HNO3