<span>Physical fitness is something that constantly needs to be worked on to maintain or improve it. Thus, it has a continuous nature. Think of running a mile. If you train for weeks, you can achieve a faster time. Once you attain the goal mile time that you want, you still have to keep training to further maintain it. However, if you stop running, the time it takes to run a mile will increase, and your physical fitness will decrease. This shows the concept of physical fitness as continuous, because to maintain or improve it, you must continue training.</span>
Answer:

General Formulas and Concepts:
<u>Algebra I</u>
- Terms/Coefficients
- Functions
- Function Notation
- Factoring
<u>Calculus</u>
Derivatives
Derivative Notation
Derivative Property [Addition/Subtraction]: ![\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28x%29%20%2B%20g%28x%29%5D%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28x%29%5D%20%2B%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bg%28x%29%5D)
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Product Rule]: ![\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bf%28x%29g%28x%29%5D%3Df%27%28x%29g%28x%29%20%2B%20g%27%28x%29f%28x%29)
Derivative Rule [Chain Rule]: ![\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Explanation:
<u>Step 1: Define</u>
<em>Identify</em>
y = x(1 + x)³
<u>Step 2: Differentiate</u>
- Product Rule [Derivative Rule - Chain Rule]:
![\displaystyle y' = \frac{d}{dx}[x] \cdot (1 + x)^3 + x \cdot \frac{d}{dx}[(1 + x)^3] \cdot \frac{d}{dx}[1 + x]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bx%5D%20%5Ccdot%20%281%20%2B%20x%29%5E3%20%2B%20x%20%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%5B%281%20%2B%20x%29%5E3%5D%20%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%5B1%20%2B%20x%5D)
- Derivative Property [Addition/Subtraction]:
![\displaystyle y' = \frac{d}{dx}[x] \cdot (1 + x)^3 + x \cdot \frac{d}{dx}[(1 + x)^3] \cdot (\frac{d}{dx}[1] + \frac{d}{dx}[x])](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bx%5D%20%5Ccdot%20%281%20%2B%20x%29%5E3%20%2B%20x%20%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%5B%281%20%2B%20x%29%5E3%5D%20%5Ccdot%20%28%5Cfrac%7Bd%7D%7Bdx%7D%5B1%5D%20%2B%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bx%5D%29)
- Basic Power Rule:

- Simplify:

- Factor:
![\displaystyle y' = (1 + x)^2 \bigg[ (1 + x) + 3x \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%281%20%2B%20x%29%5E2%20%5Cbigg%5B%20%281%20%2B%20x%29%20%2B%203x%20%5Cbigg%5D)
- Combine like terms:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Derivatives
Book: College Calculus 10e
Look up a place. You dont have to ask people on brainly.
Answer: and eating disorder is basically disordered eating. could mean one restricts food or over eats. most people with eating disorders also have a false sense of themselves.
Explanation: