Answer:

Step-by-step explanation:
To make d the subject of formula, we need to rearrange the equation such that we arrive at d= _____.

<em>Remove the fraction by multiplying (d +3) on both sides:</em>

<em>Expand</em><em>:</em>
<em>
</em>
<em>Bring</em><em> </em><em>all</em><em> </em><em>the</em><em> </em><em>d</em><em> </em><em>terms</em><em> </em><em>to</em><em> </em><em>one</em><em> </em><em>side</em><em> </em><em>and</em><em> </em><em>move</em><em> </em><em>the</em><em> </em><em>others</em><em> </em><em>to</em><em> </em><em>the</em><em> </em><em>other</em><em> </em><em>side</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>equation</em><em>:</em>

<em>Factorise</em><em> </em><em>d</em><em> </em><em>out</em><em>:</em>
<em>
</em>
<em>Divide</em><em> </em><em>by</em><em> </em><em>(</em><em>c</em><em> </em><em>+</em><em>1</em><em>)</em><em> </em><em>on</em><em> </em><em>both</em><em> </em><em>sides</em><em>:</em>
<em>
</em>
Answer:
The minimum sample size required to create the specified confidence interval is 1024.
Step-by-step explanation:
We have that to find our
level, that is the subtraction of 1 by the confidence interval divided by 2. So:

Now, we have to find z in the Ztable as such z has a pvalue of
.
So it is z with a pvalue of
, so 
Now, find the margin of error M as such

In which
is the standard deviation of the population and n is the size of the sample.
What is the minimum sample size required to create the specified confidence interval
This is n when
.






The minimum sample size required to create the specified confidence interval is 1024.
that looks like a regular octagon to me