Answer:
moles H = 2 x 0.0649=0.130
ions = 0.130 x 6.02 x 10^23=7.81 x 10^22
Explanation:
Given the balanced equation:
( Reaction type : double replacement)
CaF2 + H2SO4 → CaSO4 + 2HFI
We can determine the number of grams prepared from the quantity of 75.0 H2SO4, and 63.0g of CaF2 by converting these grams to moles per substance.
This can be done by evaluating the atomic mass of each element of the substance, and totaling it to find the molecular mass.
For H2SO4 or hydrogen sulfate it's molecular mass is the sum of the quantity of atomic mass per element. H×2 + S×1 + O×4 = ≈1.01×2 + ≈32.06×1 + ≈16×4 = 2.02 + 32.06 + 64 = 98.08 u (Dalton's or Da) or g / mol.
For CaF2 or calcium fluoride, it's molecular mass adds 1 atomic mass of calcium and 2 atomic masses of fluoride due to the number of atoms.
Ca×1 + F×2 = ≈40.07×1 + ≈19×2 = 40.08 + 38 = 78.07 u (Da or Dalton's) or g / mol.
The correct option is this: THE ORGANISM IS A PROKARYOTES.
There are basically two types of cells, prokaryotic and eukaryotic cells. The prokaryotic cells are primitive cells which contain only a few materials which are not well organised. This type of cells is usually found in microscopic organisms. The cells lack organised nucleus and cell organelles which have membranes.<span />
Answer: K only has 1 valence electron. It will leave with only a little effort, leaving behind a positively charged K^+1 atom.
Explanation: A neutral potassium atom has 19 total electrons. But only 1 of them is in potassium's valence shell. Valence shell means the outermost s and p orbitals. Potasium's electron configuration is 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1. The 4s orbital is the only orbital in the 4th energy level. So it has a valency of 1. This means this electron will be the most likely to leave, since it is the lone electron in the oyutermost energy level (4). When that electron leaves, the charge on the atom go up by 1. The atom now has a full valence shell of 3s^2 3p^6, the same as argon, Ar.