Answer:
bonding molecular orbital is lower in energy
antibonding molecular orbital is higher in energy
Explanation:
Electrons in bonding molecular orbitals help to hold the positively charged nuclei together, and they are always lower in energy than the original atomic orbitals.
Electrons in antibonding molecular orbitals are primarily located outside the internuclear region, leading to increased repulsions between the positively charged nuclei. They are always higher in energy than the parent atomic orbitals.
Answer:
Explanation:
412 ATP's will be generated from the complete metabolic oxidation of tripalmitin (tripalmitoylglycerol)
130 ATP from the oxidation of palmitate
22 ATP from the oxidation of glycerol
Altogether 130 + 22 = 412 ATP will be produced.
Here in case of tripalmitin (tripalmitoylglycerol), we have 51 carbons.
When 51 carbons can produce 412 ATPs
Then 1 carbon will produce how many ATPs = 412 ATPs/ 51 carbon= 8.1 ATPs.
This shows that ATP yield per carbon often oxidized will be 8.1 ATPs
Now we will see the ATP yield in the case of glucose.
Glucose is made up of 6 carbon and complete oxidation of glucose will produce 38 ATPs
When 6 carbons can yield 38 ATPs
Then 1 carbon can yield how many ATPs= 38 ATPs/ 6 carbons= 6.33 ATPs.
So, ATP yield per carbon in case of glucose will be 6.33 ATPs
A because of the way it looks and how it works
Answer:
Heat given off was -34.34kJ
Explanation:
Mass of iron bar = 869g
Initial temperature (T1) = 94°C
Final temperature (T2) = 5°C
Specific heat capacity of iron (c) = 0.444J/g°C
Heat energy (Q) = Mc∇T
Q = heat energy
c = specific heat capacity
∇T = change in temperature
M = mass of the substance
Q = mc∇T
∇T = T2 - T1
Q = Mc(T2 -T1)
Q = 869 * 0.444 * (5 - 94)
Q = 385.836 * -89
Q = -34339.404J
Q = -34.34kJ
The heat given of was -34.34kJ