Answer:
See the answer below
Explanation:
<u>A scientist B might want to replicate the experiment of another scientist A in order to assess the claims made by scientist A.</u> In other words, replication of the experiment of another scientist is done to see if a similar outcome would be arrived at or there would be variations.
<em>The claims made by a scientist while reporting the outcome of a particular experiment must be reproducible by another scientist under similar conditions. Otherwise, the claims are said to be false.</em>
I think the correct answer would be C. The expression that would best represent a second order rate law would be r =k[X][Y]. Reaction with this rate law are those that depend on the concentration of two first order reactants or a second order reactant.
Answer: pure substances.
Explanation:
The given substances are:
All what surrounds us, which has mass and occupies spaces, is matter. There are two kind of matter: pure substances and mixtures.
Pure substances have a uniform and constant composition. On the other hand, mixtures are combinations of two or more pure substances in any arbitratry ratio.
Pure substances may be elements or compounds. The elements are the substances conmposed by one only kind of atom. In the list of substances given, Li and O₂ are elements: all the atoms in Li are lithium, and all the atoms in O₂ are oxygen atoms.
Compounds are the chemical combination of two or more different kind of atoms. In the given list H₂O₂ and NaCl are compounds. As you see, H₂O₂ contains atoms of hydrogen and oxygen, chemically bonded, in a fixed ratio (2 atoms of hydrogen by 2 atoms of oxygen). And NaCl has atoms of Na (sodium) and Cl (chlorine), chemicaly bonded, in a fixed ratio (1:1).
There are only 118 known elements and you can find them in any modern periodic table. Therer are virtually infinitely many compounds since many different combinations of the elements can be attained.
Elements and compounds have in common that they are classified as pure substances.
Answer:
- <u><em>1.12 liters</em></u>
Explanation:
<u>Calculating number of moles</u>
- Molar mass of O₂ = 32 g
- n = Given weight / Molar mass
- n = 1.6/32
- n = 0.05 moles
<u>At STP</u>
- One mole of O₂ occupies 22.4 L
- Therefore, 0.05 moles will occupy :
- 22.4 L x 0.05 = <u><em>1.12 L</em></u>
Answer:
<h2>Density = 0.8 g/cm³</h2>
Explanation:
The density of an object can be found using the formula
<h3>

</h3>
From the question
mass of kerosene = 36.4 g
volume of kerosene = 45.6 mL
To find the density substitute the values into the above formula and solve
We have
<h3>

</h3>
= 0.7982
We have the final answer as
<h3>Density = 0.8 g/cm³</h3>
Hope this helps you