When a pendulum is at the midpoint of its oscillation, hanging straight down ...
-- that's the fastest it's going to swing, so its kinetic energy is maximum;
and
-- that's the lowest it's going to get, so its potential energy is minimum.
'c' is your choice.
Answer:
The frequency of infrared wave is 35.385 GHz
Explanation:
Given data:
Wavelength of infrared light = 8.45 mm = 8.45 x
m
Velocity of infrared light = 2.99 x
m/s
To find: frequency of the infrared wave = ?
We know that the wavelength and frequency are inversely proportional and the formula to derive frequency with velocity and wavelength is:
c = μλ, where
c is velocity of light
μ is frequency of light
λ is wavelength of light
Hence the frequency of light μ = c/λ
= 
=
x

= 35.385 x
Hz (since 1
= 1 Hz)
= 35.385 GHz
Answer:
four-year degree Right arrow. graduate school Right arrow. license from the NCLEX
Answer:
Current is calculated as the amount of charge that pass a point on a circuit per time.
Explanation:
Electric current is defined as the amount of charge that passes a point on a circuit per unit time. The mathematical definition of electric current is given by :

Where
q is a charge (Coulomb)
t is time (in seconds)
The SI unit of electric current is A. It is equivalent to C/s. So, the correct option is (A).
Answer:
3.8 × 10 ⁻¹⁴ m
Explanation:
The alpha particle will be deflected when its kinetic energy is equal to the potential energy
Charge of the alpha particle q₁= 2 × 1.6 × 10⁻¹⁹ C = 3.2 × 10⁻¹⁹ C
Charge of the gold nucleus q₂= 79 × 1.6 × 10⁻¹⁹ = 1.264 × 10⁻¹⁷C
Kinetic energy of the alpha particle = 5.97 × 10⁶ × 1.602 × 10⁻¹⁹ J ( 1 eV) = 9.564 × 10⁻¹³
k electrostatic force constant = 9 × 10⁹ N.m²/c²
Kinetic energy = potential energy = k q₁q₂ / r where r is the closest distance the alpha particle got to the gold nucleus
r = ( 9 × 10⁹ N.m²/c² × 3.2 × 10⁻¹⁹ C × 1.264 × 10⁻¹⁷C) / 9.564 × 10⁻¹³ = 3.8 × 10 ⁻¹⁴ m