Answer:
0.28 m
Explanation:
The following data were obtained from the question:
Force (F) = 5×10¯⁶ N
Charge 1 (q₁) = 6.7×10¯⁹ C
Charge 2 (q₂) = 6.7×10¯⁹ C
Electrical constant (K) = 9×10⁹ Nm²C¯²
Distance apart (r) =?
Thus, the distance between the two charges can be obtained as follow:
F = Kq₁q₂/r²
5×10¯⁶ = 9×10⁹ × 6.7×10¯⁹ × 6.7×10¯⁹/r²
5×10¯⁶ = 4.0401×10¯⁷ / r²
Cross multiply
5×10¯⁶ × r² = 4.0401×10¯⁷
Divide both side by 5×10¯⁶
r² = 4.0401×10¯⁷ / 5×10¯⁶
Take the square root of both side
r = √(4.0401×10¯⁷ / 5×10¯⁶)
r = 0.28 m
Therefore, the distance between the two charges is 0.28 m
Answer:
It can cause an object to accelerate.
It can cause an object to stop moving.
It can cause an object to start moving.
It can cause an object to change directions.
Explanation:
When the velocity of an object is increased in the same direction, the object is said to have positive acceleration. If it increases its velocity in a direction that is opposite to the original direction, it is negative acceleration.
When an object that's already moving is made to stop, it is said to have decelerated. Deceleration is negative acceleration.
When an object at rest is made to move by applying a force, it is said to have accelerated to some final velocity, during its motion for some duration.
An object at rest will remain at rest is said to have no net force acting on it.
The moon is 230,100 miles from planet earth.
The net force on q₃ will be 17.51 N. The net force is the algebraic sum of the two forces on the pleading q₃
<h3 /><h3>What is Columb's law?</h3>
The force of attraction between two charges, according to Coulomb's law, is directly proportional to the product of the charges and inversely proportional to the square of the distance between them.
The force,by the charge q₁ on the q₃;

The force,by the charge q₂ on the q₃;

The net force is the sum of the two forces;

Hence, the net force on q₃ will be 17.51 N.
To learn more about Columb's law, refer to the link;
brainly.com/question/1616890
#SPJ1
Answer: elastic potential energy = 20.27 J
Explanation:
Given that the
Mass M = 0.470 kg
Height h = 4.40 m
Spring constant K = 85 N/m
The maximum elastic potential will be equal to the maximum kinetic energy experienced by the block.
But according to conservative of energy, the maximum kinetic energy is equal to the maximum potential energy experienced by the block of mass M.
That is
K .E = P.E = mgh
Where g = 9.8m/s^2
Substitutes all the parameters into the formula
K.E = 0.470 × 9.8 × 4.4
K.E = 20.27 J
Where K.E = maximum elastic potential energy stored in the spring during the motion of the blocks after the collision which is 20.27J.