This question involves the concepts of projectile motion and launch speed.
(a) The initial launch speed of the projectile is "100 m/s".
(b) The launch angle of the projectile is "53.13°".
<h3>(a) LAUNCH SPEED</h3>
A projectile motion is a motion that takes place on both x and y axes, simultaneously. In this motion the initial launch speed is given by the following formula:

where,
= initial launch speed = ?
= horizontal component of initial launch speed = 60 m/s
= vertical component of initial launch speed = 80 m/s
Therefore,

<h3>(b) LAUNCH ANGLE</h3>
Launch angle is given by th following formula:

Learn more about the projectile motion here:
brainly.com/question/11049671
Answer:
<em>Thermal energy</em>
Explanation:
<u>Electrical Energy
</u>
The electrical energy has been found to be an excellent resource to power our modern lifestyle. It can be produced in several ways including hydroelectrical plants, thermal plants, nuclear plants, solar panels, among many others. Each one of them converts different types of energy into electrical energy.
When converting to electrical energy, some equipment is needed, like generators, transformers, cables, circuit breakers, and every kind of devices with specific functions to have a good and safe electrical service. Each device has an internal resistance that opposes the flow of current. The resistances produce thermal energy as a result of current flowing through them. It's not possible to avoid this waste of energy, electrical engineers do their best to use better materials and configurations to reduce the thermal waste to a minimum.
Explanation :
Simple machines makes our work easier. Lever is one of the simple machine which consists of rigid rod that is pivoted at a fixed support called as Fulcrum.
There are three classes of lever.
Class 1 : In this type of class, fulcrum is placed in between effort and load. Hence the movement of load is in reverse direction of the movement of effort. (fig 1)
Class 2 : In this type of, the load is between the effort and the fulcrum. Hence, the movement of load is in same direction as that of the effort. (fig 2)
Class 3 : In this type of lever the effort between the load and the fulcrum. Hence, both the effort and load are in same direction. (fig 3)
Hence, when the position of fulcrum is modified the effort force changes.